An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% a...An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% and 40%-50% by dry weight of soil,respectively.Testing specimens were determined and examined in chemical composition,grain size distribution,consistency limits,compaction,CBR,free swell and swell capacity.The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil.Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash,which decreases plasticity index.As the amount of lime and fly ash is increased,there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure,and a corresponding increase in the percentage of coarse particles,optimum moisture content and CBR value.Based on the results,it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.展开更多
Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and ...Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.展开更多
Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth an...Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth and to discuss in particular the potential hazard to soils and plants according to the characteristics of heavy metal accumulation and migration when FA and SS are used as the amendments of calcific soil in a limestone mining area. The results showed that the application of FA-SS mixture is capable of accelerating the growth of plants and improving the biomass production at either 1:1 or 1:2 FA-SS mixture:soil(w/w).The highest yields were obtained at 1:1(w/w)mixing ratio.When compared with the Element Background Values of Soils in China,the analysis on heavy metals indicated that the contents of Pb,Cr,Hg,Cd,As,Ni,Cu and Zn in the amended soils came up to the second-class environmental quality standards,only Hg and Cd showed significant accumulation.At the same time, though the metal concentrations in roots were higher than those for the control,the concentrations except Cu,Zn in shoots were lower.And all the heavy metal contents in the plants were substantially lower than the toxicity limits. The results indicated that the combined use of FA and SS at a rational rate of application should pose no danger to both soil and food chain based on the characteristics of the FS and SS,heavy metals and calcific soil.展开更多
Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were r...Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.展开更多
The present investigation was conducted to find out the effect of varying levels of fly ash and growth hormones on the determination of chlorophylls. The experiments were conducted in pots during 2009-2010 with Arachi...The present investigation was conducted to find out the effect of varying levels of fly ash and growth hormones on the determination of chlorophylls. The experiments were conducted in pots during 2009-2010 with Arachis hypogaea L. (groundnut) grown with different levels of fly ash concentration, and soil was used (various combinations) at Guru ghasidas University, Bilaspur (CG.) India. In fresh leaf, chlorophylls content varies in the plain soil from 0.29 to 0.64 mg g-1, which is less for photosynthetic activities. Arachis hypogaea L. showed maximum germination percentage, increasing leaf area, enhancement of root & shoot length, whereas Fly ash, bio fertilizers with growth hormone showed minimum values in all parameters. Results showed that, for combination of A to E, the value of chlorophyll ranged from 0.270 mg g-1 to 0.395 mg g-1, and chlorophyll b ranged from 0.400 mg g-1 to 0.489 mg g-1, whereas fro total chloro- phyll ranged from 0.67 to 0.85 mg g-1. In the present work, chlorophyll a, chlorophyll b & total chlorophyll content in fresh leaf, after 45 days, were recorded as 0.395 mg g-1, 0.489 mg g-1 and 0.851 mg g-1 while in 90 days were recorded as 10.38 mg g-1, 0.48 mg g-1 and 0.86 mg g-1 respectively, in less amount combination of fly ash, soil content with application of growth hormone.展开更多
Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the indust...Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4^2- and Cl^- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 μg/L, respectively.展开更多
文摘An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% and 40%-50% by dry weight of soil,respectively.Testing specimens were determined and examined in chemical composition,grain size distribution,consistency limits,compaction,CBR,free swell and swell capacity.The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil.Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash,which decreases plasticity index.As the amount of lime and fly ash is increased,there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure,and a corresponding increase in the percentage of coarse particles,optimum moisture content and CBR value.Based on the results,it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.
基金supported by the project from Council of Scientific and Industrial Research,New Delhi,India (Grant No.21 (0859)/11/EMR-Ⅱ)
文摘Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation.
文摘Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth and to discuss in particular the potential hazard to soils and plants according to the characteristics of heavy metal accumulation and migration when FA and SS are used as the amendments of calcific soil in a limestone mining area. The results showed that the application of FA-SS mixture is capable of accelerating the growth of plants and improving the biomass production at either 1:1 or 1:2 FA-SS mixture:soil(w/w).The highest yields were obtained at 1:1(w/w)mixing ratio.When compared with the Element Background Values of Soils in China,the analysis on heavy metals indicated that the contents of Pb,Cr,Hg,Cd,As,Ni,Cu and Zn in the amended soils came up to the second-class environmental quality standards,only Hg and Cd showed significant accumulation.At the same time, though the metal concentrations in roots were higher than those for the control,the concentrations except Cu,Zn in shoots were lower.And all the heavy metal contents in the plants were substantially lower than the toxicity limits. The results indicated that the combined use of FA and SS at a rational rate of application should pose no danger to both soil and food chain based on the characteristics of the FS and SS,heavy metals and calcific soil.
文摘Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.
文摘The present investigation was conducted to find out the effect of varying levels of fly ash and growth hormones on the determination of chlorophylls. The experiments were conducted in pots during 2009-2010 with Arachis hypogaea L. (groundnut) grown with different levels of fly ash concentration, and soil was used (various combinations) at Guru ghasidas University, Bilaspur (CG.) India. In fresh leaf, chlorophylls content varies in the plain soil from 0.29 to 0.64 mg g-1, which is less for photosynthetic activities. Arachis hypogaea L. showed maximum germination percentage, increasing leaf area, enhancement of root & shoot length, whereas Fly ash, bio fertilizers with growth hormone showed minimum values in all parameters. Results showed that, for combination of A to E, the value of chlorophyll ranged from 0.270 mg g-1 to 0.395 mg g-1, and chlorophyll b ranged from 0.400 mg g-1 to 0.489 mg g-1, whereas fro total chloro- phyll ranged from 0.67 to 0.85 mg g-1. In the present work, chlorophyll a, chlorophyll b & total chlorophyll content in fresh leaf, after 45 days, were recorded as 0.395 mg g-1, 0.489 mg g-1 and 0.851 mg g-1 while in 90 days were recorded as 10.38 mg g-1, 0.48 mg g-1 and 0.86 mg g-1 respectively, in less amount combination of fly ash, soil content with application of growth hormone.
基金supported by the National Basic Research Project(973)of China(No.2004CB418503)the National Natural Science Foundation of China(No.20477029,20337010)the Natural Science Foundation of Liaoning(No.20062002).
文摘Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4^2- and Cl^- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 μg/L, respectively.