The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition...β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon.展开更多
The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its...The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110℃ and calcined at 400 to 1000℃. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000℃ resulted in the phase transformation. The more active alumina phase of active θ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000℃ possessed the 7-d compressive strength of 34.2 MPa.展开更多
High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa...The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.展开更多
Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing comp...Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.展开更多
The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disp...The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the ad- vantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Rea- sonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.展开更多
A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The struct...A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.展开更多
To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of var...To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.展开更多
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ...The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.展开更多
Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two diff...Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two different processing methods namely conventional stir casting and friction stir processing(FSP).The microstructural features were observed using optical microscope,scanning electron microscope and electron backscatter diffraction.The sliding wear behavior was tested using a pin-on-disc wear apparatus.The stir cast composite showed inhomogeneous particle dispersion and coarse grain structure.Some of the FA particles decomposed and reacted with the matrix alloy to produce undesirable compounds.Conversely,FSP composite showed superior particle dispersion and fine,equiaxed grains by dynamic recrystallization.FA particles encountered disintegration but there was no interfacial reaction.FSP composite demonstrated higher strengthening and wear resistance to that of stir cast composite.The morphology of the worn surface and the wear debris were studied in detail.展开更多
The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyze...The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyzed by combing Thermochemicdl data base calculation and XRD characterization. The results show that some of constituents in fly ash have reacted with liquid aluminum so that the elemental Si, Fe, Ti as well as some amount of intermetallic compounds occur. The properties of aluminum/fly ash composites have been improved. With the fraction of fly ash increase, the composite density decreases; the hardness and the modulus of the composite increases, and the composite wear resistance are significantly increased. The fly ash reinforced composites represent a sort of low cost product with possible widespread applications in the automotive, small engine, and electromechanical machinery sectors.展开更多
An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structur...An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structure characteristic (porosity), and filler/matrix interface friction to the high vibration damping capacity of such composites. The damping properties of the composites were investigated in the temperature range of-40 to 150℃ and in the frequency range of 10 to 800 Hz by using a tension-compression mode. The results indicate that the peak value of damping loss factor (tan3) for the fly ash/epoxy composites can reach 0.70-0.90 in test specification, and the attenuation of damping loss factor is inconspicuous with increasing frequency. In addition, scanning electron microscope (SEM) was used to observe the morphology of the fly ash as well as its distribution in the matrix, which will help to analyze the effect of fly ash on the damping properties of the fly ash/epoxy composites.展开更多
The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binde...The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.展开更多
The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in W...The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.展开更多
The microstructure and the mechanical properties of hardened mortars made of superplasticized composite binder containing shale ash and fly ash are investigated. The pozzolanic reaction consumes the oriented Ca (OH)/...The microstructure and the mechanical properties of hardened mortars made of superplasticized composite binder containing shale ash and fly ash are investigated. The pozzolanic reaction consumes the oriented Ca (OH)//2 crystals, thus making the transition zone dense. Appropriately proportioning of shale ash and fly ash decreases the water requirement and increases the packing density of composite binder mortars, therefore increases their strength. Superplasticizer promotes the carbonation of calcium hydrates and the formation of ettringite that is transformed gradually into mono-sulfoaluminate hydrate in composite binder mortars. The joint action of fine complex mineral admixture and superplasticizer has a synergistic effect to improve the mechanical properties of composite binder. (Author abstract) 7 Refs.展开更多
The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear p...The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear properties under dry and water lubrication sliding against quenched AISI-1045 steel were evaluated on an MM-200 tester. The fractograph of impact specimens, worn surfaces of the composites and their transfer films on the counterpart steel surfaces were observed with a scanning electron microscope and an optical microscope. Experimental results show that the composites containing 50% 74147μm fly ash have the highest hardness, highest impact strength and smallest wear rate. The wear rate of the composite is reduced by over two orders of magnitude. However, the composite containing over 50% fly ash has decreased wear-resistance, which is attributed to the weakened interaction between the filler and the polymer matrix in the presence of inadequate polymer matrix. The improved wear-resistance of the composite under dry sliding against the steel is attributed to the formation of the composite transfer film thereon.展开更多
Pulverized fly ash (PFA) is produced about 500 billions tons every year in the world in a result of coals combustion. Most of the fly ash collected in power plants is disposed by deposition in landfills, situated as a...Pulverized fly ash (PFA) is produced about 500 billions tons every year in the world in a result of coals combustion. Most of the fly ash collected in power plants is disposed by deposition in landfills, situated as a rule near big cities with well developed infrastructure and high cost of land. Moreover, the pollution of environmental by fine solid wastes is inevitable and takes place in area of residing of a basic part of the population. The only solution is a complex processing of fine wastes with a production of value added materials. New conception of complex processing of PFA is proposed on the base of facilities of Electro-mass-classifier (EMC) and other techniques. The characterization of separated fractions was carried out by SEM and optic microscopy, XRD, laser diffraction, M?ssbauer spectroscopy and other methods. A fine fraction of glass microspheres presents the main interest as filler in various materials.展开更多
Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of ...Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.展开更多
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金Project (51074038) supported by the National Natural Science Foundation of ChinaProject (N100302002) supported by the Fundamental Research Funds for the Central Universities, China
文摘β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon.
基金supported by the Higher Education Research Promotion and National Research University Project of Thailand,Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen Universitythe Thailand Research Fund (TRF) under TRF Senior Research Scholar contract No.RTA5480004
文摘The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110℃ and calcined at 400 to 1000℃. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000℃ resulted in the phase transformation. The more active alumina phase of active θ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000℃ possessed the 7-d compressive strength of 34.2 MPa.
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金supported by Major science and technology projects of Gansu Province(22ZD6GA008,22ZD6GA014)National Natural Science Foundation of China(52304368,52164034)+2 种基金Science and Technology Project of Gansu Province(Postdoctoral project at the station)(23JRRA781,23JRRA812)Science and Technology Project of Gansu Province(Special Project of Science and Technology Specialist)(23CXGA0068)The Tamarisk Outstanding Young Talents Program of Lanzhou University of Technology.The 74th batch of China Postdoctoral Science Foundation(Regional Special Support Program)(2023MD744218).
文摘The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.
文摘Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.
文摘The rapidly increasing demand for energy in China leads to the construction of new power plants all over the country. Coal, as the main fuel resource of those power plants, results in increasing problems with the disposal of solid residues from combustion and off gas cleaning. This investigation describes chances for the utilization of fly ash from coal-fired power plants in China. After briefly comparing the situation in China and Germany, the status of aluminum recycling from fly ash and the ad- vantages for using fly ash in concrete products are introduced. Chemical and physical analyses of Chinese fly ash samples, e.g., X-ray diffraction (XRD), ICP (Inductive Coupled Plasma) and particle size analysis, water requirement, etc. are presented. Rea- sonable amounts of aluminum were detected in the samples under investigation, but for recovery only sophisticated procedures are available up to now. Therefore, simpler techniques are suggested for the first steps in the utilization of Chinese fly ash.
基金supported by the National Natural Science Foundation of China(21377018)the Natural Science Foundation of Liaoning Province of China(2013020116)the Fundamental Research Funds for the Central Universities(DUT15ZD240)~~
文摘A ternary composite of TiO2 and a SiO2-Al2O3 aerogel with good photocatalytic activity was prepared by a simple sol-gel method with TiO2 nanoparticles and SiO2-Al2O3 aerogels derived from industrial fly ash.The structural features of the TiO2/SiO2-Al2O3 aerogel composite were investigated by X-ray powder diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,gas adsorption measurements and diffuse reflectance UV-visible spectroscopy.The optimal conditions for photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol(DNBP],included an initial DNBP concentration of 0.167 mmol/L at pH = 4.86 with a catalyst concentration of 6 g/L,under visible light irradiation for 5 h.A plausible mechanism is proposed for the photocatalytic degradation of DNBP.Our composite showed higher photocatalytic activity for DNBP degradation than that of pure TiO2.This indicates that this material can serve as an efficient photocatalyst for degradation of hazardous organic pollutants in wastewater.
基金Funded by the National Natural Science Foundation of China(No.51574055)
文摘To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.
文摘The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.
文摘Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two different processing methods namely conventional stir casting and friction stir processing(FSP).The microstructural features were observed using optical microscope,scanning electron microscope and electron backscatter diffraction.The sliding wear behavior was tested using a pin-on-disc wear apparatus.The stir cast composite showed inhomogeneous particle dispersion and coarse grain structure.Some of the FA particles decomposed and reacted with the matrix alloy to produce undesirable compounds.Conversely,FSP composite showed superior particle dispersion and fine,equiaxed grains by dynamic recrystallization.FA particles encountered disintegration but there was no interfacial reaction.FSP composite demonstrated higher strengthening and wear resistance to that of stir cast composite.The morphology of the worn surface and the wear debris were studied in detail.
文摘The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyzed by combing Thermochemicdl data base calculation and XRD characterization. The results show that some of constituents in fly ash have reacted with liquid aluminum so that the elemental Si, Fe, Ti as well as some amount of intermetallic compounds occur. The properties of aluminum/fly ash composites have been improved. With the fraction of fly ash increase, the composite density decreases; the hardness and the modulus of the composite increases, and the composite wear resistance are significantly increased. The fly ash reinforced composites represent a sort of low cost product with possible widespread applications in the automotive, small engine, and electromechanical machinery sectors.
文摘An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structure characteristic (porosity), and filler/matrix interface friction to the high vibration damping capacity of such composites. The damping properties of the composites were investigated in the temperature range of-40 to 150℃ and in the frequency range of 10 to 800 Hz by using a tension-compression mode. The results indicate that the peak value of damping loss factor (tan3) for the fly ash/epoxy composites can reach 0.70-0.90 in test specification, and the attenuation of damping loss factor is inconspicuous with increasing frequency. In addition, scanning electron microscope (SEM) was used to observe the morphology of the fly ash as well as its distribution in the matrix, which will help to analyze the effect of fly ash on the damping properties of the fly ash/epoxy composites.
基金National Natural Science Foundation of China(No.11602233)。
文摘The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.
文摘The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.
文摘The microstructure and the mechanical properties of hardened mortars made of superplasticized composite binder containing shale ash and fly ash are investigated. The pozzolanic reaction consumes the oriented Ca (OH)//2 crystals, thus making the transition zone dense. Appropriately proportioning of shale ash and fly ash decreases the water requirement and increases the packing density of composite binder mortars, therefore increases their strength. Superplasticizer promotes the carbonation of calcium hydrates and the formation of ettringite that is transformed gradually into mono-sulfoaluminate hydrate in composite binder mortars. The joint action of fine complex mineral admixture and superplasticizer has a synergistic effect to improve the mechanical properties of composite binder. (Author abstract) 7 Refs.
文摘The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear properties under dry and water lubrication sliding against quenched AISI-1045 steel were evaluated on an MM-200 tester. The fractograph of impact specimens, worn surfaces of the composites and their transfer films on the counterpart steel surfaces were observed with a scanning electron microscope and an optical microscope. Experimental results show that the composites containing 50% 74147μm fly ash have the highest hardness, highest impact strength and smallest wear rate. The wear rate of the composite is reduced by over two orders of magnitude. However, the composite containing over 50% fly ash has decreased wear-resistance, which is attributed to the weakened interaction between the filler and the polymer matrix in the presence of inadequate polymer matrix. The improved wear-resistance of the composite under dry sliding against the steel is attributed to the formation of the composite transfer film thereon.
文摘Pulverized fly ash (PFA) is produced about 500 billions tons every year in the world in a result of coals combustion. Most of the fly ash collected in power plants is disposed by deposition in landfills, situated as a rule near big cities with well developed infrastructure and high cost of land. Moreover, the pollution of environmental by fine solid wastes is inevitable and takes place in area of residing of a basic part of the population. The only solution is a complex processing of fine wastes with a production of value added materials. New conception of complex processing of PFA is proposed on the base of facilities of Electro-mass-classifier (EMC) and other techniques. The characterization of separated fractions was carried out by SEM and optic microscopy, XRD, laser diffraction, M?ssbauer spectroscopy and other methods. A fine fraction of glass microspheres presents the main interest as filler in various materials.
文摘Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.