The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and ...The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and then subjected to hydrochloric acid leaching. The main parameters for water washing process were tested, and under the optimal conditions, about 86% Na, 70% K and 12% Ca were removed from fly ash, respectively. Hydrochloric acid was used for the extraction of valuable elements from the water-washed fly ash, and the optimal extraction was achieved for each heavy metal as follows: 86% for Pb, 98% for Zn, 82% for Fe, 96% for Cd, 62% for Cu, 80% for Al, respectively. And the main compositions of the finally obtained solid residue are Ca2PbO4, CaSi2Os, PbsSiO7, Ca3A12Si3012 and SiO2.展开更多
The pure-form zeolites (A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial Cu and Zn gel. The difference of adsorption capacity of both synthesized zeo...The pure-form zeolites (A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial Cu and Zn gel. The difference of adsorption capacity of both synthesized zeolits was assessed using Cu and Zn as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on zeolite A, comparing with zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was used to study the influential parameters of the adsorption process. The equilibrium data were well fitted by the Langmuir model. The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents.展开更多
The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the...The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the leaching of heavy metals from cement solidified MSWFA are investigated.The main results show that:(1) when MSWFA is mixed with cement and water,H 2 evolution,the formation and volume expansion of AFt will take place,the volume expansion can be reduced by ground rice husk ash addition;(2) heavy metals do leach from cement solidified MSWFA and at lower pH more leaching will occur;(3) compared with cement-solidified fly ash,the leachate of solidified MSWFA is with higher heavy metal contents;(4) with the increment of cement addition leached heavy metals are decreased;and (5) concentrations of Zn,Mn,Cu and Cd in all the leachates can meet the relevant Standards of Japan,but as the regulations for soil and groundwater protection of Japan are concerned,precautions against the leaching of Pb,Cl - and Cr 6+ and so on are needed.展开更多
Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(P...Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.展开更多
Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with ...Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.展开更多
The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment resid...The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.展开更多
Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limite...Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.展开更多
The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as ba...The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.展开更多
The bottom ash and fly ash from the co-combustion of wood residues and peat at a bubbling fluidised bed boiler(296 MW) contained only quartz(SiO_2), microcline(KAl Si_3O_8) and albite(NaAlSi_3O_8). Thus, X-ray...The bottom ash and fly ash from the co-combustion of wood residues and peat at a bubbling fluidised bed boiler(296 MW) contained only quartz(SiO_2), microcline(KAl Si_3O_8) and albite(NaAlSi_3O_8). Thus, X-ray powder diffraction(XRD) was not useful for clarifying the difference in the release of associated heavy metals from ash matrices. In order to assess the release of heavy metals from ashes under changing environmental conditions, they were sequentially extracted and fractionated by the BCR-procedure into acid soluble/exchangeable(CH_3COOH), reducible(NH_2OH-HCl) and oxidizable(H_2O_2/CH_3COONH_4) phases. The CH_3 COOH extractable fraction in conjunction with the total heavy metals concentrations were used to calculate the risk assessment code values for heavy metals leaching from the ash matrix. The leaching studies indicate that the heavy metals in the bottom ash and fly ash are bound to different fractions with different strengths. From the environmental and utilization perspectives, heavy metals in ashes posed different levels of environmental contamination risk. Only As in the bottom ash posed a very high risk. High risk metals were Cd in the bottom ash as well as As, Cd and Se in the fly ash.展开更多
To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier e...To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.展开更多
The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experim...The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experiment, the effects of two additives on the labile fractions of Cu, Mn and Zn were investigated in a soil contamined during long-term application. The additive used was the coal fly ash. The treated soil was further enriched with heavy metals and allowed to age at room temperature for 30 days. After this period, they were extracted plant-available (EDTA;HNO3;CH3COOH) metal species. The addition of fly ash strongly reduced the plant-available of Mn for plants but to a lesser extent this applies to the plant-available of Cu and Zn for plants. By addition of 1% of fly ash as well as 2% of fly ash, the labile fraction of Cu, Mn and Zn were lowered by 6.3, 145.0 and 29.7 mg?kg-1, respectively. Moreover essential correlation between total Cu and Zn contents was stated in the soil with plant-available content of metals, with reference to both metals. Value of coefficients of correlation is attesting to it between the total and plant-available Cu and Zn contents which are respectively equal: R(Cu) = 0.845, R(Mn) = 0.864 and R(Zn) = 0.872 for p = 99.5%. The results suggested that leading into the soil of the additional amount of fly ash can be an effective way of chemical remediation with reference to soils contaminated by Cu or Mn or Zn. Because he causes immobilization of examined heavy metals in the soil and in the process in the arrangement a—soil is limiting the availability of these metals plant and more distant bonds of the food chain.展开更多
The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ...The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.展开更多
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa...The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.展开更多
Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of ...Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.展开更多
Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth an...Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth and to discuss in particular the potential hazard to soils and plants according to the characteristics of heavy metal accumulation and migration when FA and SS are used as the amendments of calcific soil in a limestone mining area. The results showed that the application of FA-SS mixture is capable of accelerating the growth of plants and improving the biomass production at either 1:1 or 1:2 FA-SS mixture:soil(w/w).The highest yields were obtained at 1:1(w/w)mixing ratio.When compared with the Element Background Values of Soils in China,the analysis on heavy metals indicated that the contents of Pb,Cr,Hg,Cd,As,Ni,Cu and Zn in the amended soils came up to the second-class environmental quality standards,only Hg and Cd showed significant accumulation.At the same time, though the metal concentrations in roots were higher than those for the control,the concentrations except Cu,Zn in shoots were lower.And all the heavy metal contents in the plants were substantially lower than the toxicity limits. The results indicated that the combined use of FA and SS at a rational rate of application should pose no danger to both soil and food chain based on the characteristics of the FS and SS,heavy metals and calcific soil.展开更多
Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). ...Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). Six factors, namely, energy consumption, process efficiency, process handling, process cost estimation, cost reduction potential, and study progress, were used in order to find out their advantages and disadvantages and to help develop a better recovery process of heavy metals from MSWFA in terms of treatment of the waste material. Hydrochloric acid leaching process was found to be most balanced among the evaluated processes. It showed superiority on energy consumption, process cost estimation, and study progress. On the other hand, despite of its excellency in process efficiency, chloride evaporation process was most unfavorable mainly due to heavy energy dependence. Biological process, with huge potential of cost reduction, was concluded to be the second best process.展开更多
Several mechanisms are developed by the microorganisms to tolerate few high concentrations of heavy metals. One of these mechanisms dependent upon anabolic and catabolic energy of microorganisms is the bioaccumulation...Several mechanisms are developed by the microorganisms to tolerate few high concentrations of heavy metals. One of these mechanisms dependent upon anabolic and catabolic energy of microorganisms is the bioaccumulation of heavy metals. In present work, approximately four varieties of bacteria have been isolated from the ash dyke sample of four thermal power plants of Chhattisgarh, i.e., Bharat Aluminium Company (BALCO), Chhattisgarh State Electricity Board (CSEB), Korba, Thermal Power Cooperation (NTPC), Bilaspur and KSK Akaltara, Chattisgarh. Out of one hundred fifty isolates, three were capable to grow in varying concentration of heavy metals. The strains were tested for their tolerance against six different types of heavy metals dominant in the ash samples viz. Pb, Hg, Ni, Co, Cu, Mn. Their maximum resistance existed up to 0.6mM/ml of the above mentioned different metals under lab standard conditions. Three isolates are found suitable for the multiple metal resistance ability viz SM2, SM3, and SM12. These are categorized as Bacillus cereus (SM2, SM3), and Bacillus subtilis (SM12) after performing 16S rDNA sequencing.展开更多
The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying ...The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying natural zeolite, namely mordenite, as an inexpensive adsorbent to assess its feasibility for the treatment of fly ash. Batch experiments were performed to investigate the effects of the influential parameters, such as metals initial ion concentration, dosage of adsorbent, liquid to solid (L/S) ratio, and equilibrium concentration of metal on the immobilization of Pb<sup>2</sup><sup>+</sup> and Zn<sup>2+</sup>, in a novel approach. Heavy metals removal efficiency increased with increasing the dosage of mordenite influenced by the media-specific surface area. Heavy metals adsorption is ascribed to various mechanisms of ion exchange and adsorption processes. The Langmuir and Freundlich isotherm models were investigated using the adsorption data. The adsorption process describes better in the Freundlich isotherm model compared to the Langmuir isotherm model with a high determination co-efficient (R<sup>2</sup>), especially for the adsorption of Pb<sup>2+</sup>. In addition, the affinity of mordenite to Pb<sup>2+</sup> was shown to be higher than that of Zn<sup>2+</sup>. This allows the use of mordenite to capture of Pb<sup>2+</sup> in MSWI fly ash. Results raise expectations about using mordenite as a low-cost material for treating MSWI fly ashes. The results show that heavy metal (Pb<sup>2+</sup> and Zn<sup>2+</sup>) removed by mordenite adsorbent is practical and effective. In order to achieve the higher efficiency on heavy metal stabilization in MSWI fly ash, additional experiments are necessary.展开更多
文摘The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and then subjected to hydrochloric acid leaching. The main parameters for water washing process were tested, and under the optimal conditions, about 86% Na, 70% K and 12% Ca were removed from fly ash, respectively. Hydrochloric acid was used for the extraction of valuable elements from the water-washed fly ash, and the optimal extraction was achieved for each heavy metal as follows: 86% for Pb, 98% for Zn, 82% for Fe, 96% for Cd, 62% for Cu, 80% for Al, respectively. And the main compositions of the finally obtained solid residue are Ca2PbO4, CaSi2Os, PbsSiO7, Ca3A12Si3012 and SiO2.
基金supported by the Special Funds for Doctor's Station of University (No. 20060288008)the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708079)
文摘The pure-form zeolites (A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial Cu and Zn gel. The difference of adsorption capacity of both synthesized zeolits was assessed using Cu and Zn as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on zeolite A, comparing with zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was used to study the influential parameters of the adsorption process. The equilibrium data were well fitted by the Langmuir model. The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents.
文摘The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the leaching of heavy metals from cement solidified MSWFA are investigated.The main results show that:(1) when MSWFA is mixed with cement and water,H 2 evolution,the formation and volume expansion of AFt will take place,the volume expansion can be reduced by ground rice husk ash addition;(2) heavy metals do leach from cement solidified MSWFA and at lower pH more leaching will occur;(3) compared with cement-solidified fly ash,the leachate of solidified MSWFA is with higher heavy metal contents;(4) with the increment of cement addition leached heavy metals are decreased;and (5) concentrations of Zn,Mn,Cu and Cd in all the leachates can meet the relevant Standards of Japan,but as the regulations for soil and groundwater protection of Japan are concerned,precautions against the leaching of Pb,Cl - and Cr 6+ and so on are needed.
文摘Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.
基金supported by the Knowledge Innovation Project in the Chinese Academy of Sciences(No.O45CF3A211)National Natural Science Foundation of China(No.21171169)
文摘Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110072120046)
文摘The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.
基金This work was supported by the National Natural Science Foun-dation of China(No.52174273)the Basic Science Center Project for National Natural Science Foundation of China(No.72088101)+1 种基金the Postdoctoral Science Foundation of China(No.2021TQ0370)the Science and Technology Innovation Program of Hunan Pro-vince(No.2021RC2003).
文摘Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.
基金Funded by the National Natural Science Foundation of China(No.20477024)2003 Shanghai Education Research Fund
文摘The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.
文摘The bottom ash and fly ash from the co-combustion of wood residues and peat at a bubbling fluidised bed boiler(296 MW) contained only quartz(SiO_2), microcline(KAl Si_3O_8) and albite(NaAlSi_3O_8). Thus, X-ray powder diffraction(XRD) was not useful for clarifying the difference in the release of associated heavy metals from ash matrices. In order to assess the release of heavy metals from ashes under changing environmental conditions, they were sequentially extracted and fractionated by the BCR-procedure into acid soluble/exchangeable(CH_3COOH), reducible(NH_2OH-HCl) and oxidizable(H_2O_2/CH_3COONH_4) phases. The CH_3 COOH extractable fraction in conjunction with the total heavy metals concentrations were used to calculate the risk assessment code values for heavy metals leaching from the ash matrix. The leaching studies indicate that the heavy metals in the bottom ash and fly ash are bound to different fractions with different strengths. From the environmental and utilization perspectives, heavy metals in ashes posed different levels of environmental contamination risk. Only As in the bottom ash posed a very high risk. High risk metals were Cd in the bottom ash as well as As, Cd and Se in the fly ash.
文摘To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.
文摘The labile fraction of heavy metals in soils is the most important for toxicity for plants. Thus it is crucial to reduce this fraction in contamined soils to decrease the negative effect of heavy metals. In an experiment, the effects of two additives on the labile fractions of Cu, Mn and Zn were investigated in a soil contamined during long-term application. The additive used was the coal fly ash. The treated soil was further enriched with heavy metals and allowed to age at room temperature for 30 days. After this period, they were extracted plant-available (EDTA;HNO3;CH3COOH) metal species. The addition of fly ash strongly reduced the plant-available of Mn for plants but to a lesser extent this applies to the plant-available of Cu and Zn for plants. By addition of 1% of fly ash as well as 2% of fly ash, the labile fraction of Cu, Mn and Zn were lowered by 6.3, 145.0 and 29.7 mg?kg-1, respectively. Moreover essential correlation between total Cu and Zn contents was stated in the soil with plant-available content of metals, with reference to both metals. Value of coefficients of correlation is attesting to it between the total and plant-available Cu and Zn contents which are respectively equal: R(Cu) = 0.845, R(Mn) = 0.864 and R(Zn) = 0.872 for p = 99.5%. The results suggested that leading into the soil of the additional amount of fly ash can be an effective way of chemical remediation with reference to soils contaminated by Cu or Mn or Zn. Because he causes immobilization of examined heavy metals in the soil and in the process in the arrangement a—soil is limiting the availability of these metals plant and more distant bonds of the food chain.
基金Supported by the Project of Shangai State-owned Assets Supervision and Administration Commission(2013019)Project of Shanghai Science and Technology Commission(13231201901)+1 种基金Innovation Foundation of Shanghai Science and Technology Commission(11231200200)Special Project for Zhangjiang High-tech Park in Shanghai(201505-HP-C104-005)
文摘The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.
基金supported by Major science and technology projects of Gansu Province(22ZD6GA008,22ZD6GA014)National Natural Science Foundation of China(52304368,52164034)+2 种基金Science and Technology Project of Gansu Province(Postdoctoral project at the station)(23JRRA781,23JRRA812)Science and Technology Project of Gansu Province(Special Project of Science and Technology Specialist)(23CXGA0068)The Tamarisk Outstanding Young Talents Program of Lanzhou University of Technology.The 74th batch of China Postdoctoral Science Foundation(Regional Special Support Program)(2023MD744218).
文摘The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.
基金Funded by the Natural Science Foundation of China (No. 50702014)Outstanding young teacher’s teaching and researching plan from Southeast UniversityOpening Project of Key Laboratory for Advanced Civil Engineering Materials from Tongjin University
文摘Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.
文摘Land disposal of fly ash(FA)and sewage sludge(SS)is a major problem due largely to their potentially harmful constituents.In this paper,a potting experiment was performed to evaluate the effects on the plant growth and to discuss in particular the potential hazard to soils and plants according to the characteristics of heavy metal accumulation and migration when FA and SS are used as the amendments of calcific soil in a limestone mining area. The results showed that the application of FA-SS mixture is capable of accelerating the growth of plants and improving the biomass production at either 1:1 or 1:2 FA-SS mixture:soil(w/w).The highest yields were obtained at 1:1(w/w)mixing ratio.When compared with the Element Background Values of Soils in China,the analysis on heavy metals indicated that the contents of Pb,Cr,Hg,Cd,As,Ni,Cu and Zn in the amended soils came up to the second-class environmental quality standards,only Hg and Cd showed significant accumulation.At the same time, though the metal concentrations in roots were higher than those for the control,the concentrations except Cu,Zn in shoots were lower.And all the heavy metal contents in the plants were substantially lower than the toxicity limits. The results indicated that the combined use of FA and SS at a rational rate of application should pose no danger to both soil and food chain based on the characteristics of the FS and SS,heavy metals and calcific soil.
文摘Hydrochloric acid leaching, chloride evaporation, acetic acid leaching, and biological leaching were evaluated and compared as processes of heavy metal removal for municipal solid waste incineration fly ash(MSWFA). Six factors, namely, energy consumption, process efficiency, process handling, process cost estimation, cost reduction potential, and study progress, were used in order to find out their advantages and disadvantages and to help develop a better recovery process of heavy metals from MSWFA in terms of treatment of the waste material. Hydrochloric acid leaching process was found to be most balanced among the evaluated processes. It showed superiority on energy consumption, process cost estimation, and study progress. On the other hand, despite of its excellency in process efficiency, chloride evaporation process was most unfavorable mainly due to heavy energy dependence. Biological process, with huge potential of cost reduction, was concluded to be the second best process.
文摘Several mechanisms are developed by the microorganisms to tolerate few high concentrations of heavy metals. One of these mechanisms dependent upon anabolic and catabolic energy of microorganisms is the bioaccumulation of heavy metals. In present work, approximately four varieties of bacteria have been isolated from the ash dyke sample of four thermal power plants of Chhattisgarh, i.e., Bharat Aluminium Company (BALCO), Chhattisgarh State Electricity Board (CSEB), Korba, Thermal Power Cooperation (NTPC), Bilaspur and KSK Akaltara, Chattisgarh. Out of one hundred fifty isolates, three were capable to grow in varying concentration of heavy metals. The strains were tested for their tolerance against six different types of heavy metals dominant in the ash samples viz. Pb, Hg, Ni, Co, Cu, Mn. Their maximum resistance existed up to 0.6mM/ml of the above mentioned different metals under lab standard conditions. Three isolates are found suitable for the multiple metal resistance ability viz SM2, SM3, and SM12. These are categorized as Bacillus cereus (SM2, SM3), and Bacillus subtilis (SM12) after performing 16S rDNA sequencing.
文摘The current study investigated the sorption process of heavy metals, especially lead (Pb<sup>2+</sup>) and Zinc (Zn<sup>2+</sup>), in Municipal Solid Waste Incineration (MSWI) fly ash applying natural zeolite, namely mordenite, as an inexpensive adsorbent to assess its feasibility for the treatment of fly ash. Batch experiments were performed to investigate the effects of the influential parameters, such as metals initial ion concentration, dosage of adsorbent, liquid to solid (L/S) ratio, and equilibrium concentration of metal on the immobilization of Pb<sup>2</sup><sup>+</sup> and Zn<sup>2+</sup>, in a novel approach. Heavy metals removal efficiency increased with increasing the dosage of mordenite influenced by the media-specific surface area. Heavy metals adsorption is ascribed to various mechanisms of ion exchange and adsorption processes. The Langmuir and Freundlich isotherm models were investigated using the adsorption data. The adsorption process describes better in the Freundlich isotherm model compared to the Langmuir isotherm model with a high determination co-efficient (R<sup>2</sup>), especially for the adsorption of Pb<sup>2+</sup>. In addition, the affinity of mordenite to Pb<sup>2+</sup> was shown to be higher than that of Zn<sup>2+</sup>. This allows the use of mordenite to capture of Pb<sup>2+</sup> in MSWI fly ash. Results raise expectations about using mordenite as a low-cost material for treating MSWI fly ashes. The results show that heavy metal (Pb<sup>2+</sup> and Zn<sup>2+</sup>) removed by mordenite adsorbent is practical and effective. In order to achieve the higher efficiency on heavy metal stabilization in MSWI fly ash, additional experiments are necessary.