Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with...Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.展开更多
In this study,we investigated the performance of a synthetic resin for the adsorption of Li from predesilicated solution which is the waste liquid produced by extracting aluminum from fly ash.The adsorption kinetics a...In this study,we investigated the performance of a synthetic resin for the adsorption of Li from predesilicated solution which is the waste liquid produced by extracting aluminum from fly ash.The adsorption kinetics and isotherms of the resin were obtained and analyzed.The saturated adsorption sites of the resin were in agreement with the quasi-second-order kinetic model.Then,the pore diffusion model(PDM)was applied to represent the lithium adsorption kinetics which confirming that the external mass is the limiting step.Moreover,we evaluated the adsorption properties of this resin in fixed-bed mode.We established a feasible extraction process for Li from strong alkaline solutions with low Li concentrations.The process parameters,such as the flow rate,initial adsorption solution concentration,water washing process,desorption agent concentration,and flow rate were studied.The desorption rate of the Li;ions was directly proportional with the concentration of the desorption agent.The time required to accumulate Li decreased as the hydrochloric acid concentration and flow rate increased.Time of the peak appeared increased from 0.5 bed volume(BV)to 2.5 BV as the concentration was increased from 1 to3 mol·L^(-1),and the peak increased from 231 to 394 mg·L^(-1).The resin presented good selectivity for Li;ions and could effectively separate impurity ions from the pre-desilication solution.展开更多
A combined acid–alkali hydrothermal method was used to prepare fly ash–derived SAPO-34 molecular sieves from a thermal power plant in Inner Mongolia(China).The specific surface area of the prepared fly-ash-derived S...A combined acid–alkali hydrothermal method was used to prepare fly ash–derived SAPO-34 molecular sieves from a thermal power plant in Inner Mongolia(China).The specific surface area of the prepared fly-ash-derived SAPO-34 molecular sieves was 579 m^2 g^-1,the total pore volume was about 0.27 cm^3 g^-1,and the pore size was 0.56 nm;the molar ratios of Al2O3:P2O5:SiO2 were 1:0.86:0.45.Cu/SAPO-34 catalysts were prepared by impregnation of low-cost fly-ash-derived SAPO-34 molecular sieves as a support and tested in selective catalytic reduction with NH3(NH3-SCR).Powder X-ray diffraction(XRD),N2 adsorption–desorption,X-ray photoelectron spectroscopy(XPS),H2 temperatureprogrammed reduction(H2-TPR),NH3 temperature-programmed desorption(NH3-TPD),electron paramagnetic resonance(EPR),nuclear magnetic resonance(NMR),X-ray fluorescence analysis(XRF)and scanning electron microscopy(SEM)were used for catalyst characterization and investigation of the relationships between the catalyst structure and the catalytic activity.The actual silica:alumina ratio of the molecular sieves did not increase with increasing Cu loading,indicating that increasing the Cu loading does not change the original structure of the SAPO-34 molecular sieves.The XRF and NMR results showed that replacement by Cu results in more Si islands.The molecular sieve acidity decreased because of the increased number of Si islands.The NH3-TPD results showed that for the Cu/SAPO-34 catalysts there was a low correlation between the low-temperature activity and the amount of acidic sites.SCR activity is closely related to the location of Cu.The 4.47 Cu/SAPO-34 catalyst has the highest isolated Cu2+showed the highest NH3-SCR activities(>90%)at 250–350℃.This work opens up new avenues for recycling fly ash formed in coal-fired power plants(reducing environmental pollution)and developing low-cost SCR catalysts for NOx pollution control.展开更多
A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive st...A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.展开更多
In this paper, the fly-ash ceramics with prior physical propertieswas fabricated in a low sintering temperature range. XRD, SEM wereused to study the microstructure and sintering mechanism. The resultsshow that in thi...In this paper, the fly-ash ceramics with prior physical propertieswas fabricated in a low sintering temperature range. XRD, SEM wereused to study the microstructure and sintering mechanism. The resultsshow that in this fly-ash ceramics, three kinds of matter form itsstructure frame such as the glass pearls from the fly-ash rawmaterials, quartz and mullite in which glass liquid phase wasproduced during sintering. And the sintering mechanism is that ofliquid sintering.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52275178)Fujian Provincial Natural Science Foundation of China(Grant Nos.2020J05115,2022J01073)Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology of China(Grant No.202103).
文摘Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.
基金supported by National Key Research and Development Program of China(2017YFB0603104)Sponsored by Shanghai Pujiang Program(2019PJD011)the financial support from the State Key Laboratory of Green Chemistry Synthesis Technology(Zhejiang University of Technology,Hangzhou 310032)。
文摘In this study,we investigated the performance of a synthetic resin for the adsorption of Li from predesilicated solution which is the waste liquid produced by extracting aluminum from fly ash.The adsorption kinetics and isotherms of the resin were obtained and analyzed.The saturated adsorption sites of the resin were in agreement with the quasi-second-order kinetic model.Then,the pore diffusion model(PDM)was applied to represent the lithium adsorption kinetics which confirming that the external mass is the limiting step.Moreover,we evaluated the adsorption properties of this resin in fixed-bed mode.We established a feasible extraction process for Li from strong alkaline solutions with low Li concentrations.The process parameters,such as the flow rate,initial adsorption solution concentration,water washing process,desorption agent concentration,and flow rate were studied.The desorption rate of the Li;ions was directly proportional with the concentration of the desorption agent.The time required to accumulate Li decreased as the hydrochloric acid concentration and flow rate increased.Time of the peak appeared increased from 0.5 bed volume(BV)to 2.5 BV as the concentration was increased from 1 to3 mol·L^(-1),and the peak increased from 231 to 394 mg·L^(-1).The resin presented good selectivity for Li;ions and could effectively separate impurity ions from the pre-desilication solution.
基金support by the National High Technology Research and Development Program (“863” program) of China (2012AA06A115)China Postdoctoral Science Foundation (2017M610723)
文摘A combined acid–alkali hydrothermal method was used to prepare fly ash–derived SAPO-34 molecular sieves from a thermal power plant in Inner Mongolia(China).The specific surface area of the prepared fly-ash-derived SAPO-34 molecular sieves was 579 m^2 g^-1,the total pore volume was about 0.27 cm^3 g^-1,and the pore size was 0.56 nm;the molar ratios of Al2O3:P2O5:SiO2 were 1:0.86:0.45.Cu/SAPO-34 catalysts were prepared by impregnation of low-cost fly-ash-derived SAPO-34 molecular sieves as a support and tested in selective catalytic reduction with NH3(NH3-SCR).Powder X-ray diffraction(XRD),N2 adsorption–desorption,X-ray photoelectron spectroscopy(XPS),H2 temperatureprogrammed reduction(H2-TPR),NH3 temperature-programmed desorption(NH3-TPD),electron paramagnetic resonance(EPR),nuclear magnetic resonance(NMR),X-ray fluorescence analysis(XRF)and scanning electron microscopy(SEM)were used for catalyst characterization and investigation of the relationships between the catalyst structure and the catalytic activity.The actual silica:alumina ratio of the molecular sieves did not increase with increasing Cu loading,indicating that increasing the Cu loading does not change the original structure of the SAPO-34 molecular sieves.The XRF and NMR results showed that replacement by Cu results in more Si islands.The molecular sieve acidity decreased because of the increased number of Si islands.The NH3-TPD results showed that for the Cu/SAPO-34 catalysts there was a low correlation between the low-temperature activity and the amount of acidic sites.SCR activity is closely related to the location of Cu.The 4.47 Cu/SAPO-34 catalyst has the highest isolated Cu2+showed the highest NH3-SCR activities(>90%)at 250–350℃.This work opens up new avenues for recycling fly ash formed in coal-fired power plants(reducing environmental pollution)and developing low-cost SCR catalysts for NOx pollution control.
基金Project 20062147 supported by the Liaoning Province Natural Science Foundation of China
文摘A thermal insulating material is synthesized via a non-steam-cured and non-fired route by using fly-ash, sorel cement and hydrogen peroxide solution as raw material. Properties such as apparent density, compressive strength, bending strength, thermal conductivity, water resistance, and thermal tolerance of this matrial are studied, some influencing factors on its performance discussed. This material has an apparent density of 360 kg/m^3, a compressive strength of 1.86 MPa, a thermal conduction coefficient of 0.072 W/(m·K), a softening coefficient of 0.55, and a thermal tolerant temperature of 300 ℃. Test results show that this material is light in weight, of high strength, and good thermal insulation. In addition, neither steam-curing nor sintering is needed in producing it. Further more, large amount of fly ash is used in this material, making it a low cost and environment-friendly building material.
文摘In this paper, the fly-ash ceramics with prior physical propertieswas fabricated in a low sintering temperature range. XRD, SEM wereused to study the microstructure and sintering mechanism. The resultsshow that in this fly-ash ceramics, three kinds of matter form itsstructure frame such as the glass pearls from the fly-ash rawmaterials, quartz and mullite in which glass liquid phase wasproduced during sintering. And the sintering mechanism is that ofliquid sintering.