The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC...Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.展开更多
This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP re...This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.展开更多
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop...In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.展开更多
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre...Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.展开更多
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio...Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.展开更多
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti...Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed.展开更多
In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency....In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.展开更多
Geopolymer is a new type of eco-friendly cementitious material, and its superior drying and high temperature resistance has been widely recognized. The service performance of geopolymer under 150 ℃ high-temperature h...Geopolymer is a new type of eco-friendly cementitious material, and its superior drying and high temperature resistance has been widely recognized. The service performance of geopolymer under 150 ℃ high-temperature hydrothermal conditions is still less discussed. In this paper, the mechanical strength of pure metakaolin system with low calcium content and metakaolin-cement system with high calcium content under hydrothermal and non-hydrothermal conditions were studied. The results show that under 150 ℃ hydrothermal conditions, the strength of pure metakaolin geopolymer sharply decreases by reduction rate of 81.8% compared to the sample under 150 ℃ drying conditions, while the strength of metakaolin-cement geopolymers is well retained with only a slight decrease of 14.4%. This is mainly because the predominantly hydration product sodium aluminosilicate(N-A-S-H) gel of pure metakaolin system undergoes the process of “dissociation–repolymerization–crystallization” under 150 ℃ hydrothermal conditions, resulting in the loss of cementation ability and obvious deterioration of mechanical strength. In the metakaolin-cement system, the high-calcium calcium silicate gel(C-A-S-H)gel maintains a stable structure, thereby maintaining the macroscopic strength of the material under the hydrothermal conditions.展开更多
This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used ...This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used as the primary source of binder,and the activation is initiated through the alkali liquid which is proportioned in various combinations of silicate to hydroxide ratio(Na_(2)SiO_(3)/Na OH)ratio,and this ratio in this study varies from 1 to 3.The UFNSP is calcined at two difierent temperatures,700 and 1000℃.The mortar mix is proportioned as 1:3 between powder and the fine aggregate,and the mortar is prepared with hydroxide molarity(M)of 10 M.The mortar is cured for 48 hours at 60℃and the compressive strength was studied.All the mix were studied for its microstructural behavior along with compressive strength.The mix proportion of the mortar,and the results obtained through microstructural characterization were combinedly formed as input for artificial neural network(ANN)predictive modelling.The model is designed to predict the compressive strength,which is trained through Bayesian regularization algorithm with varying hidden neurons of 7 to 10.This experimental and predictive study shows that the strength is influenced by both Na_(2)SiO_(3)/Na OH ratio and calcination process.And the ANN is influenced by mainly calcination temperature and uncorrelation occurs in selected samples of 1000℃calcined UFNSP mix.展开更多
Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200℃,400℃,...Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200℃,400℃,600℃and 800℃.Physical properties,micro-structure,and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties,which are essential for the use as building materials.As the temperature rises,the drying shrinkage and apparent porosity of the composites increase,while the compressive and bending strengths decrease.At the temperature range of 200℃–800℃,the residual compressive strength rates of the geopolymer composite containning 2 wt.%bamboo shaving were respective 73.8%,61.47%,56.16%,and 29.56%,meanwhile,the residual flexural strength rates were respective 46.69%,8.68%,2.52%,and 2.33%.Correspondingly,the residual compressive strength rates of pure geopolymer were respective 72.81%,61.99%,54.55%,and 14.64%;the residual flexural strength rates were 48.87%,5.69%,3.22%,and 2.47%,respectively.Scanning electron microscope(SEM),optical microscope,and X-ray diffractometry(XRD)were applied to find the microscopic changes.The strength loss in the geopolymer composites was mainly because of the thermal degradation of bamboo shaving and shrinkage of geopolymer matrix.Bamboo shaving has great potential as reinforcer in developing low-cost geopolymer composites and may be used for applications up to 400℃.展开更多
The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, ...The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.展开更多
Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due t...Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.展开更多
Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile prop...Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile properties,the correlation between ultrasonic pulse velocity and tensile properties,and characteristic parameters of microcracks.The experimental results show that obvious strain hardening behavior can be found in FA-EGC at different curing ages.With the increase of curing age,the tensile strength increases,the tensile strain decreases and the toughness becomes worse.The UPV of FA-EGC increases with curing age,and a strong correlation can be found between tensile strength and UPV.With the increase of curing age,the average crack width of FA-EGC decreases and the total number of cracks increases.This is because the strength of geopolymer increases fast at early age,thus the later strength development of FA-EGC tend to be stable.At the same time,the bond strength between fiber and matrix,and the friction of fiber/matrix interface continue to increase with curing age,thus the bridging effect of fiber is gradually strengthened.In conclusion,the increase of curing age is beneficial to the development of tensile properties of FA-EGC.展开更多
In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The par...In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec- tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri- cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an akernative source material for geopolymer production.展开更多
The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by ...The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60℃ for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results-in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.展开更多
Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopoly...Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geo-polymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.展开更多
Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescen...Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescence of the resulting geopolymers. The efflorescence of geopolymer binders was inspected and evaluated through leaching tests. The efflorescence deposits on surface of the geopolymer binders were analyzed using XRD and SEM-EDS. The results showed that sodium and calcium cations leached from geopolymer binders reacted with the atmospheric CO2 and formed the crystal deposits, gaylussite and calcite, in the forms of granular and angular crystal particles. The slag addition led to a refinement of the pore structure of fly ash-based geopolymers, but an increment in the concentration of alkali leaching. The crystal deposits gradually developed in the pore volume of the binders, and finally exceeded the capacity of pore volume. The extent of efflorescence on the surface of specimens increased with the slag substitution. The visible efflorescence is therefore a result of available alkalis and pore sizes and volumes. Higher concentration of available alkalis and smaller pores (and volume) will lead to more intensive efflorescence.展开更多
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
文摘Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.
基金Funded by the National Natural Science Foundation of China(No.52008046)Young Elite Scientists Sponsorship Program from JSAST(No.TJ-2023-024)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2848)。
文摘This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.
基金This study was supported by MatSoil Company(Grant No.04G/2022)This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie(Grant No.778120).
文摘In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-02-02385).
文摘Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2023R809).
文摘Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.
文摘Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed.
基金This work was supported by National Key Research and Development Project(2020YFB1600102,2020YFA0714302)National Natural Science Foundation of China(51878164,51922030,52208430)+2 种基金Fundamental Research Funds for the Central Universities of China(2242022R10059)Natural Science Foundation of Jiangsu Province(SBK2021042206)Southeast University“Zhongying Young Scholars”Project,and Shuangchuang Program of Jiangsu Province(JSSCBS20210058).
文摘In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.
基金supported by the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (20YYGZ-KF-GC-04)。
文摘Geopolymer is a new type of eco-friendly cementitious material, and its superior drying and high temperature resistance has been widely recognized. The service performance of geopolymer under 150 ℃ high-temperature hydrothermal conditions is still less discussed. In this paper, the mechanical strength of pure metakaolin system with low calcium content and metakaolin-cement system with high calcium content under hydrothermal and non-hydrothermal conditions were studied. The results show that under 150 ℃ hydrothermal conditions, the strength of pure metakaolin geopolymer sharply decreases by reduction rate of 81.8% compared to the sample under 150 ℃ drying conditions, while the strength of metakaolin-cement geopolymers is well retained with only a slight decrease of 14.4%. This is mainly because the predominantly hydration product sodium aluminosilicate(N-A-S-H) gel of pure metakaolin system undergoes the process of “dissociation–repolymerization–crystallization” under 150 ℃ hydrothermal conditions, resulting in the loss of cementation ability and obvious deterioration of mechanical strength. In the metakaolin-cement system, the high-calcium calcium silicate gel(C-A-S-H)gel maintains a stable structure, thereby maintaining the macroscopic strength of the material under the hydrothermal conditions.
文摘This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used as the primary source of binder,and the activation is initiated through the alkali liquid which is proportioned in various combinations of silicate to hydroxide ratio(Na_(2)SiO_(3)/Na OH)ratio,and this ratio in this study varies from 1 to 3.The UFNSP is calcined at two difierent temperatures,700 and 1000℃.The mortar mix is proportioned as 1:3 between powder and the fine aggregate,and the mortar is prepared with hydroxide molarity(M)of 10 M.The mortar is cured for 48 hours at 60℃and the compressive strength was studied.All the mix were studied for its microstructural behavior along with compressive strength.The mix proportion of the mortar,and the results obtained through microstructural characterization were combinedly formed as input for artificial neural network(ANN)predictive modelling.The model is designed to predict the compressive strength,which is trained through Bayesian regularization algorithm with varying hidden neurons of 7 to 10.This experimental and predictive study shows that the strength is influenced by both Na_(2)SiO_(3)/Na OH ratio and calcination process.And the ANN is influenced by mainly calcination temperature and uncorrelation occurs in selected samples of 1000℃calcined UFNSP mix.
基金supported by the Excellent Youth Foundation of Education Department of Hunan Province,China(20B612)Changsha Natural Science Foundation of China(kq2014158).
文摘Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200℃,400℃,600℃and 800℃.Physical properties,micro-structure,and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties,which are essential for the use as building materials.As the temperature rises,the drying shrinkage and apparent porosity of the composites increase,while the compressive and bending strengths decrease.At the temperature range of 200℃–800℃,the residual compressive strength rates of the geopolymer composite containning 2 wt.%bamboo shaving were respective 73.8%,61.47%,56.16%,and 29.56%,meanwhile,the residual flexural strength rates were respective 46.69%,8.68%,2.52%,and 2.33%.Correspondingly,the residual compressive strength rates of pure geopolymer were respective 72.81%,61.99%,54.55%,and 14.64%;the residual flexural strength rates were 48.87%,5.69%,3.22%,and 2.47%,respectively.Scanning electron microscope(SEM),optical microscope,and X-ray diffractometry(XRD)were applied to find the microscopic changes.The strength loss in the geopolymer composites was mainly because of the thermal degradation of bamboo shaving and shrinkage of geopolymer matrix.Bamboo shaving has great potential as reinforcer in developing low-cost geopolymer composites and may be used for applications up to 400℃.
文摘The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.
基金Funding Statement:This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.
基金Funded by the National Natural Science Foundation of China(Nos.52178241 and 52242807)the Fundamental Research Funds for the Central Universities(No.64522120220599 and 2023-2-YB-20)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(Nos.2021YFB3802001 and 2019YFE0112600)。
文摘Tensile properties of fly ash based engineered geopolymer composites(FA-EGC)at different curing ages were studied by uniaxial tensile test and ultrasonic pulse velocity(UPV)methods,which included uniaxial tensile properties,the correlation between ultrasonic pulse velocity and tensile properties,and characteristic parameters of microcracks.The experimental results show that obvious strain hardening behavior can be found in FA-EGC at different curing ages.With the increase of curing age,the tensile strength increases,the tensile strain decreases and the toughness becomes worse.The UPV of FA-EGC increases with curing age,and a strong correlation can be found between tensile strength and UPV.With the increase of curing age,the average crack width of FA-EGC decreases and the total number of cracks increases.This is because the strength of geopolymer increases fast at early age,thus the later strength development of FA-EGC tend to be stable.At the same time,the bond strength between fiber and matrix,and the friction of fiber/matrix interface continue to increase with curing age,thus the bridging effect of fiber is gradually strengthened.In conclusion,the increase of curing age is beneficial to the development of tensile properties of FA-EGC.
基金financially supported by the National Natural Science Foundation of China(No.50872151)the National Key Technology Support Project(No.2009BAB48B02)+1 种基金the Fundamental Research Funds for Central Universities(Nos.2009KH09 and 2009QH02)the Specialized Research Fund for Doctoral Program of Higher Education of China(No.20120023110011)
文摘In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning elec- tron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabri- cated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an akernative source material for geopolymer production.
基金supported by the Higher Education Research Promotion and National Research University Project of ThailandThailand Research Fund (TRF) under the TRF Senior Research Scholar (No.RTA5480004)the Royal Golden Jubilee Ph.D. Program (No. PHD/0340/2552)
文摘The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60℃ for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results-in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.
文摘Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geo-polymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.
基金Funded by the Jiangsu Higher Education Institutions for a project PAPD(Priority Academic Program Development),Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)+1 种基金Graduate Education Innovation Project in Jiangsu Province(No.CXLX13_409)supported by University of Southern Queensland and an ARC-linkage project
文摘Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescence of the resulting geopolymers. The efflorescence of geopolymer binders was inspected and evaluated through leaching tests. The efflorescence deposits on surface of the geopolymer binders were analyzed using XRD and SEM-EDS. The results showed that sodium and calcium cations leached from geopolymer binders reacted with the atmospheric CO2 and formed the crystal deposits, gaylussite and calcite, in the forms of granular and angular crystal particles. The slag addition led to a refinement of the pore structure of fly ash-based geopolymers, but an increment in the concentration of alkali leaching. The crystal deposits gradually developed in the pore volume of the binders, and finally exceeded the capacity of pore volume. The extent of efflorescence on the surface of specimens increased with the slag substitution. The visible efflorescence is therefore a result of available alkalis and pore sizes and volumes. Higher concentration of available alkalis and smaller pores (and volume) will lead to more intensive efflorescence.