In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and d...In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and directs economic losses amounted to nearly 10 billion US dollars each year.Therefore, Flying Bird Detection(FBD) has attracted considerable attention in low-altitude air traffic management. In this paper, we propose a skeleton based FBD method via describing bird motion information with a set of key poses. To overcome the variability of birds, the skeleton feature is selected as a relatively fixed and common characteristic for the pose appearance of flying bird. Based on the geometric topology among some key parts of bird body, a set of key poses can be described by some extracted skeleton features, which are used to represent the bird motion information. Aimed at robustly handling with the pose variations, multiple pose-specific classifiers are individually trained to learn the representative poses of the flying bird. At the detection stage,the flying bird skeleton features are combined with extracted key-pose sets to perform the flying bird classification task from each image. Afterwards, the key-frame pose-change set and the consistency of the classification results from sequent images are employed to validate the final detection results.Experiments on flying bird datasets demonstrate the effectiveness and efficiency of the proposed method.展开更多
In this paper, a study of a three-dimensional(3D) self-propelled bionic flying bird in a viscous flow is carried out. This bionic bird is propelled and lifted through flapping and rotating wings, and better flying can...In this paper, a study of a three-dimensional(3D) self-propelled bionic flying bird in a viscous flow is carried out. This bionic bird is propelled and lifted through flapping and rotating wings, and better flying can be achieved by adjusting the flapping and rotation motion of wings. In this study, we found that the bird can fly faster forward and upward with appropriate center of rotation and oscillation without more energy consumption and have perfect flight performance at a certain angle of attack by adjusting the center of oscillation. The study utilizes a 3D computational fluid dynamics package which constitutes combined immersed boundary method and the volume of fluid method. In addition, it includes adaptive multigrid finite volume method and control strategy of swimming and flying.展开更多
The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whol...The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whole strike process is performed in 4. 8 ms,the critical strike velocity for an aeronautic glass windshield is 360 km/h,the windshield vibrates and deforms in the collision,and after absorbing the kinetic energy,its temperature increases. The simulation results coincide with the experiment data better. It is clear that MCA method has more advantages than the usual methods of continuum mechanics.展开更多
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse pro...We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.展开更多
The primitive carving discovered at the Hemudu site of Yuyao, Zhejiang Province. first appeared on practical and sacrificial utensils. The utensil shown here is called. "The Double Birds Fly to the Sun." An ...The primitive carving discovered at the Hemudu site of Yuyao, Zhejiang Province. first appeared on practical and sacrificial utensils. The utensil shown here is called. "The Double Birds Fly to the Sun." An exquisitely-carved piece. it was unearthed in 1977 at Hemudu. At 16.6 cm long, 5,9 cm wide and 1.2 cm thick, its base and upper section are incomplete. On the surface of the ivory, a beautiful picture is carved in intaglio lines: A pair of concentric circles in different sizes.展开更多
基金co-supported by the National Key Research and Development Program of China (No. 2016YFB1200100)National Natural Science Foundation of China (Nos. 61521091, 91538204 and 61425014)
文摘In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and directs economic losses amounted to nearly 10 billion US dollars each year.Therefore, Flying Bird Detection(FBD) has attracted considerable attention in low-altitude air traffic management. In this paper, we propose a skeleton based FBD method via describing bird motion information with a set of key poses. To overcome the variability of birds, the skeleton feature is selected as a relatively fixed and common characteristic for the pose appearance of flying bird. Based on the geometric topology among some key parts of bird body, a set of key poses can be described by some extracted skeleton features, which are used to represent the bird motion information. Aimed at robustly handling with the pose variations, multiple pose-specific classifiers are individually trained to learn the representative poses of the flying bird. At the detection stage,the flying bird skeleton features are combined with extracted key-pose sets to perform the flying bird classification task from each image. Afterwards, the key-frame pose-change set and the consistency of the classification results from sequent images are employed to validate the final detection results.Experiments on flying bird datasets demonstrate the effectiveness and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.11372068)the National Key Basic Research and Development Program of China(Grant No.2014CB744104)
文摘In this paper, a study of a three-dimensional(3D) self-propelled bionic flying bird in a viscous flow is carried out. This bionic bird is propelled and lifted through flapping and rotating wings, and better flying can be achieved by adjusting the flapping and rotation motion of wings. In this study, we found that the bird can fly faster forward and upward with appropriate center of rotation and oscillation without more energy consumption and have perfect flight performance at a certain angle of attack by adjusting the center of oscillation. The study utilizes a 3D computational fluid dynamics package which constitutes combined immersed boundary method and the volume of fluid method. In addition, it includes adaptive multigrid finite volume method and control strategy of swimming and flying.
文摘The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whole strike process is performed in 4. 8 ms,the critical strike velocity for an aeronautic glass windshield is 360 km/h,the windshield vibrates and deforms in the collision,and after absorbing the kinetic energy,its temperature increases. The simulation results coincide with the experiment data better. It is clear that MCA method has more advantages than the usual methods of continuum mechanics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875106 and 11175158)
文摘We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.
文摘The primitive carving discovered at the Hemudu site of Yuyao, Zhejiang Province. first appeared on practical and sacrificial utensils. The utensil shown here is called. "The Double Birds Fly to the Sun." An exquisitely-carved piece. it was unearthed in 1977 at Hemudu. At 16.6 cm long, 5,9 cm wide and 1.2 cm thick, its base and upper section are incomplete. On the surface of the ivory, a beautiful picture is carved in intaglio lines: A pair of concentric circles in different sizes.