期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
1
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
2
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE particle size Residual resistance coefficient
下载PDF
A dynamic large-deformation particle finite element method for geotechnical applications based on Abaqus
3
作者 Weihai Yuan Jinxin Zhu +4 位作者 Neng Wang Wei Zhang Beibing Dai Yuanjun Jiang Yuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1859-1871,共13页
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo... In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering. 展开更多
关键词 ABAQUS Collapse of granular materials DYNAMICS Large deformation particle finite element method(PFEM) Rigid strip footing
下载PDF
Time effect and prediction of broken rock bulking coefficient on the base of particle discrete element method 被引量:4
4
作者 Fanfei Meng Hai Pu +4 位作者 Takashi Sasaoka Hideki Shimada Sifei Liu Tumelo KM Dintwe Ziheng Sha 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期643-651,共9页
Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad... Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure. 展开更多
关键词 Bulking coefficient Time effect deformation prediction Broken rock particle discrete element model
下载PDF
Stereo particle image velocimetry measurement of 3D soil deformation around laterally loaded pile in sand 被引量:6
5
作者 袁炳祥 谌文武 +2 位作者 姜彤 汪亦显 陈科平 《Journal of Central South University》 SCIE EI CAS 2013年第3期791-798,共8页
A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement t... A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing. 展开更多
关键词 粒子图像测速 横向承载桩 变形测量 立体声 周围土体 3D MATLAB 测速系统
下载PDF
Quasi-static tensile deformation and fracture behavior of a highly particle-filled composite using digital image correlation method 被引量:5
6
作者 Zhongbin Zhou,Pengwan Chen,Baoqiao Guo,Zhuoping Duan,and Fenglei Huang State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期10-13,共4页
Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (S... Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test.The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera.The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method.The crack opening displacement is calculated from the displacement fields,the initiation and propagation of the crack are analyzed.In addition,the damage evolution and fracture mechanisms of the SCB sample are analyzed according to the strain fields and the correlation coefficient fields at different loading steps. 展开更多
关键词 highly particle-filled composite digital image correlation deformation and fracture damage evolution
下载PDF
Understanding the mechanisms of friction stir welding based on computer simulation using particles
7
作者 A.Yu.Smolin E.V.Shilko +3 位作者 S.V.Astafurov E.A.Kolubaev G.M.Eremina S.G.Psakhie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期643-656,共14页
Friction stir welding(FSW) is a novel technique for joining different materials without melting. In FSW the welded components are joined by stirring the plasticized material of the welded edges with a special rotating... Friction stir welding(FSW) is a novel technique for joining different materials without melting. In FSW the welded components are joined by stirring the plasticized material of the welded edges with a special rotating pin plunged into the material and moving along the joint line. From the scientific point of view,the key role of the FSW processes belongs to formation of the special plasticized conditions and activation of physical mechanisms of mixing the materials in such conditions to produce the strong homogeneous weld. But it is still a lack of complete understanding of what are these conditions and mechanisms.This paper is devoted to understanding the mechanisms of material mixing in conditions of FSW based on a computer simulation using particles. The movable cellular automaton method(MCA), which is a representative of the particle methods in mechanics of materials, was used to perform all computations.Usually, material flow including material stirring in FSW is simulated using computational fluid mechanics or smoothed particle hydrodynamics, which assume that the material is a continuum and does not take into account the material structure. MCA considers a material as an ensemble of bonded particles. Breaking of inter-particle bonds and formation of new bonds enables simulation of crack nucleation and healing, as well as mass mixing and micro-welding.The paper consists of two main parts. In the first part, the simulations in 2 D statements are performed to study the dynamics of friction stir welding of duralumin plates and influence of different welding regimes on the features of the material stirring and temperature distribution in the forming welded joints. It is shown that the ratio of the rotational speed to the advancing velocity of the tool has a dramatic effect on the joint quality. A suitable choice of these parameters combined with additional ultrasonic impact could considerably reduce the number of pores and microcracks in the weld without significant overheating of the welded materials.The second part of the paper considers simulation in the 3 D statement. These simulations showed that using tool pins of different shape like a cylinder, cone, or pyramid without a shoulder results in negligible motion of the plasticized material in the direction of workpiece thickness. However, the optimal ratio of the advancing velocity to the rotational speed allows transporting of the stirred material around the tool pin several times and hence producing the joint of good quality. 展开更多
关键词 FRICTION STIR WELDING PLASTIC flow deformation MECHANISMS Simulation particle method
下载PDF
Effect of particle characteristics on deformation of particle reinforced metal matrix composites 被引量:6
8
作者 张鹏 李付国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期655-661,共7页
The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the cha... The particle characteristics of 15%SiC particles reinforced metal matrix composites(MMC)made by powder metallurgy route were studied by using a statistical method.In the analysis,the approach for estimation of the characteristics of particles was presented.The study was carried out by using the mathematic software MATLAB to calculate the area and perimeter of each particle, in which the image processing technique was employed.Based on the calculations,the sizes and shape factors of each particle were investigated respectively.Additionally,the finite element model(FEM)was established on the basis of the actual microstructure.The contour plots of von Mises effective stress and strain in matrix and particles were presented in calculations for considering the influence of microstructure on the deformation behavior of MMC.Moreover,the contour maps of the maximum stress of particles and the maximum plastic strain of matrix in the vicinity of particles were introduced respectively. 展开更多
关键词 metal matrix composites deformation mechanism particle characteristic finite element model
下载PDF
Performance Improved of a Lime and Hemp-Based Concrete through the Addition of Metakaolin
9
作者 Suzanne Daher Amar Benazzouk +1 位作者 Haïkel Ben Hamed Thierry Langlet 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1091-1113,共23页
This work describes in detail the experimental investigation of the physico-mechanical properties of nonstructural hemp concrete(usually used as insulating wall material)when the Air-lime based Tradial PF70 binder is ... This work describes in detail the experimental investigation of the physico-mechanical properties of nonstructural hemp concrete(usually used as insulating wall material)when the Air-lime based Tradial PF70 binder is partially replaced using Metakaolin.The objective is to reduce the amount of free Ca2+ions in the binder as these are responsible for the degradation of vegetables particles and can therefore induce a loss of mechanical performances.In order to assess the effectiveness of pozzolanic reaction,amounts of 0%,10%,and 20%vol.of Air-lime binder were replaced by the Metakaolin material,while testing the mechanical properties of concrete specimens containing 200%and 300%of hemp particles.Through SEM and EDX analysis,a tight relationship has been found to exist between the Metakaolin content and physical-mechanical properties of specimen.The pozzolanic reaction consumes calcium hydroxide from binder to produce Hydrated Calcium Silicates(C-S-H)and in turn,this leads to a decrease in the pH-value of the pore solution which is the main factor responsible for hemp particle degradation. 展开更多
关键词 Agro-sourced materials hemp particles tradical PF70 binder METAKAOLIN pozzolanic products mechanical properties DEFORMABILITY particle mineralisation SEM and EDX analyses
下载PDF
Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings(Ni–P/fly ash and Ni–P/SiO2–Al2O3) 被引量:2
10
作者 Franco Mayanglambam Mark Russell 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第8期1147-1156,共10页
Recycling and reusing materials from waste have become a nexus in the development of sustainable materials,leading to more balanced technologies.In this study,we developed a composite coating by co-depositing recycled... Recycling and reusing materials from waste have become a nexus in the development of sustainable materials,leading to more balanced technologies.In this study,we developed a composite coating by co-depositing recycled ceramic particles,pulverised fly ash(PFA)and medical ceramics(MC),into a nickel–phosphorus matrix using a typical electroless plating process.Scanning electron microscopy(SEM)images indicated well-dispersed particles in the Ni–P matrix.However,compared with the MC particles,the PFA particles were distributed scantily with a lower content in the matrix,which could be due to the less impingement effect during the co-deposition.A modified microstructure with refined grains was obtained for the PFA-incorporated composite coating,as seen in the SEM micrograph.The X-ray diffraction result of the MC-incorporated composite coating showed the formation of Nix Siy phases in addition to the typical Ni3 P phases for the heattreated electroless Ni–P coatings.Upon heat treatment,the PFA-reinforced composite coating,due to a modified microstructure,exhibited a higher microhardness up to HK0.05818,which is comparable to that of the traditional SiC particle-embedded composite coating(HK0.05825).The findings can potentially open up a new strategy to further advance the green approach for industrial surface engineering. 展开更多
关键词 electroless plating waste ceramics fly ash particles microstructure MICROHARDNESS
下载PDF
Numerical simulation of the blocking process of gelled particles in porous media with remaining polymers 被引量:1
11
作者 Feng Qihong Zhang Ge +1 位作者 Yin Xiaomei Luan Zhiyong 《Petroleum Science》 SCIE CAS CSCD 2009年第3期284-288,共5页
Gelled particles can be transferred deeply inside oil reservoirs to block water channels due to their physicochemical characteristics, including swelling, deformation, and synergetic effect (reacting with polymers),... Gelled particles can be transferred deeply inside oil reservoirs to block water channels due to their physicochemical characteristics, including swelling, deformation, and synergetic effect (reacting with polymers), and then the injection profiles are significantly modified. At present, research on gelled particles is mainly focused on laboratory studies of drive mechanisms, and rarely on mathematical models describing the blocking process of gelled particles. In this paper, the blocking process of gelled particles is divided into two sub-processes: deposition and desorption due to particle deformation. A mathematical model based on filtration theory is proposed considering the effect of characteristics of gelled particles on the blocking process. Blocking laws were simulated and researched using the mathematical model. Results of the simulation of the blocking of gelled particles are quite consistent with the experimental results, which confirms the reliability of the mathematical model developed. 展开更多
关键词 Gelled particles profile control blocking process numerical simulation SWELLING synergetic effect deformation
下载PDF
Large deformation simulations of geomaterials using moving particle semi-implicit method 被引量:1
12
作者 Shintaro Nohara Hiroshi Suenaga Kunihiko Nakamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1122-1132,共11页
Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g... Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials. 展开更多
关键词 particle method Moving particle semi-implicit(MPS) method Large deformation analysis GEOMATERIALS Bingham model
下载PDF
Numerical simulation of the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying 被引量:1
13
作者 MENG Xianming ZHANG Junbao +3 位作者 HAN Wei LIANG Yongli YANG Xiaoping ZHAO Jie 《Baosteel Technical Research》 CAS 2011年第1期12-16,共5页
In this study, the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numer... In this study, the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numerical simulated by means of a finite element analysis (FEA). The results have illustrated that when the particle impact velocity exceeds a critical value at which adiabatic shear instability of the particle starts to occur. Meanwhile, the fatten ratio and impact crater depth (or the effective contacting area ) increase rapidly. The particle-substrate bonding and deposition mechanism can be attributed to such an adiabatic shear deformation induced by both the compressive force and the slide friction force of particle. The critical velocity can be predicted by numerical simulation, which is useful to optimize the CGDS processing parameters for various materials. 展开更多
关键词 numerical simulation cold gas dynamic spraying(CGDS) deformation particle impact velocity
下载PDF
Application of Reproducing Kernel Particle Method in an Analysis of Elasto-plastic Deformation Under Taylor Impact 被引量:1
14
作者 ZHAO Guang-ming SONG Shun-cheng MENG Xiang-rui 《Journal of China University of Mining and Technology》 EI 2006年第4期485-489,共5页
The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods de- veloped internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact... The Reproducing Kernel Particle Method (RKPM) is one of several new meshless numerical methods de- veloped internationally in recent years. The ideal elasto-plastic constitutive model of material under a Taylor impact is characterized by the Jaumann stress- and strain-rates. An updated Lagrangian format is used for the calculation in a nu- merical analysis. With the RKPM, this paper deals with the calculation model for the Taylor impact and deduces the control equation for the impact process. A program was developed to simulate numerically the Taylor impact of projec- tiles composed of several kinds of material. The simulation result is in good accordance with both the test results and the Taylor analysis outcome. Since the meshless method is not limited by meshes, it is believed to be widely applicable to such complicated processes as the Taylor impact, including large deformation and strain and to the study of the dy- namic qualities of materials. 展开更多
关键词 再生核颗粒法 数值模拟 冲击波
下载PDF
Elevated temperature compressive deformation behavior of 2024Al matrix composite reinforced by sub-micro Al_2O_3 particles
15
作者 栾佰峰 武高辉 +3 位作者 孙东立 张强 苟华松 N.Kouno 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期270-275,共6页
The compressive behavior of sub-micro Al2O 3P (40%, volume fraction)/2024Al composite was investigated within the temperature range from 270℃ to 620℃ under various strain rates from 0.00042s -1 to 0.14s ... The compressive behavior of sub-micro Al2O 3P (40%, volume fraction)/2024Al composite was investigated within the temperature range from 270℃ to 620℃ under various strain rates from 0.00042s -1 to 0.14s -1. Results show that the critical compression reduction of the composite presents a saddle law under the combined influence of temperature and strain rate. That means the composites exhibit better deformation ability at higher temperature with higher strain rate (445℃, 0.14s -1) or at lower temperature with lower strain rate (320℃, 0.0042s -1). 展开更多
关键词 COMPOSITE Al2O3 particle COMPRESSIVE deformation critical compression reduction SADDLE law deformation mechanism
下载PDF
Computer Simulation of the Indentation Creep Tests on Particle-Reinforced Composites
16
作者 Zhufeng YUE1,2)1)Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China2)Institute of Materials, Ruhr University, 44780 Bochum, Germany 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期335-340,共6页
A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five ... A systematical simulation has been carried out on the indentation creep test on particle-reinforced composites. The deformation, failure mechanisms and life are analyzed by three reasonable models. The following five factors have been considered simultaneously: creep property of the particle, creep property of the matrix, the shape of the particle, the volume fraction of the particle and the size (relative size to the particle) of the indentation indenter. For all the cases, the power law respecting to the applied stress can be used to model the steady indentation creep depth rate of the indenter, and the detail expressions have been presented. The computer simulation precision is analyzed by the two-phase model and the three-phase model. Two places of the stress concentration are found in the composites. One is ahead of the indentation indenter, where the high stress state is deduced by the edge of the indenter and will decrease rapidly near to a steady value with the creep time. The other one is at the interface, where the high stress state is deduced by the misfit of material properties between the particles and matrix. It has been found that the creep dissipation energy density other than a stress parameter can be used to be the criterion to model the debonding of the interfaces. With the criterion of the critical creep dissipation energy density, a power law to the applied stress with negative exponent can be used to model the failure life deduced by the debonding of interfaces. The influences of the shape of the particles and the matching of creep properties of particle and matrix can be discussed for the failure. With a crack model, the further growth of interface crack is analyzed, and some important experimental phenomena can be predicted. The failure mechanism which the particle will be punched into matrix has been also discussed. The critical differences between the creep properties of the particles and matrix have been calculated, after a parameter has been defined. In the view of competition of failure mechanisms, the best matching of the creep properties of the two phases and the best shape of the particles are discussed for the composite design. 展开更多
关键词 Indentation creep test particle-reinforced composites Computer simulation deformation FAILURE
下载PDF
Influence of Deformation on Light Particles as a Probe of Nuclear Dissipation for a Neutron-Deficient ^178Pb System
17
作者 YE Wei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4期687-690,共4页
<正> Using a diffusion model we investigate deformation effects on the sensitivity of different light particlesto nuclear dissipation for a rather neutron-deficient ~(178)Pb system.Calculations show that deforma... <正> Using a diffusion model we investigate deformation effects on the sensitivity of different light particlesto nuclear dissipation for a rather neutron-deficient ~(178)Pb system.Calculations show that deformation significantlyincreases the sensitivity of neutron emission to dissipation strength,and that this effect becomes stronger with increasingdeformation. 展开更多
关键词 变形效应 同位旋效应 预分离离子多样性 核子耗散 探头 离散模型
下载PDF
TRACKING DEFORMABLE AND OCCLUDED OBJECTS USING PARTICLE FILTERING AND GVF-SNAKE
18
作者 Dong Chunli Dong Yuning +2 位作者 Wang Li Zhang Hui Liu Jie 《Journal of Electronics(China)》 2009年第6期819-824,共6页
An adaptive object tracking algorithm based on particle filtering and a modified Gradient Vector Flow (GVF) Snake is proposed for tracking moving and deforming objects. The original contours of objects are obtained by... An adaptive object tracking algorithm based on particle filtering and a modified Gradient Vector Flow (GVF) Snake is proposed for tracking moving and deforming objects. The original contours of objects are obtained by using the background differencing method,and the true contours of objects can be converged by means of the powerful searching ability of a modified GVF-Snake. Finally,an Energetic Particle Filtering (EPF) algorithm is obtained by combining particle filtering and a modified GVF-Snake,and by using K-means and the EPF algorithm,multiple objects can be tracked. The proposed tracking tactic for partially occluded objects can effectively improve its anti-occlusion ability. Experiments show that this algorithm can obtain better tracking effect even though the tracked object is occluded. 展开更多
关键词 目标跟踪算法 物体变形 粒子滤波 闭塞 甚小口径终端 部分遮挡 梯度矢量流
下载PDF
Plastic Flow Macrolocalization: Autowave and Quasi-Particle
19
作者 Lev B. Zuev Svetlana A. Barannikova 《Journal of Modern Physics》 2010年第1期1-8,共8页
A new approach is proposed to describe the autowave processes responsible for plastic deformation localiza-tion in metals and alloys. The existence of a quasi-particle, which corresponds to a localized plastic flow au... A new approach is proposed to describe the autowave processes responsible for plastic deformation localiza-tion in metals and alloys. The existence of a quasi-particle, which corresponds to a localized plastic flow autowave, is postulated and its characteristics are determined. The above postulate leads to a number of cor-ollaries and quantitative assessments that are considered herein. The deformation processes occurring on the macro- and micro-scale levels are found to be directly related. 展开更多
关键词 LOCALIZATION PLASTIC deformation AUTOWAVE QUASI-particle
下载PDF
AN ANALYSIS OF THE MODELING OF STRESS AND STRAIN FIELDS IN A REAL MICROSTRUC-TURE USING AHYBRID METHOD 被引量:2
20
作者 E.Soppa S.Schmauder 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第3期277-282,共6页
The distribution of stress and strain fields in a micro-structuralarea of a particle reinforced composite is studied by a combinationof experimental and numerical method (hybrid method). With the ex-perimental values ... The distribution of stress and strain fields in a micro-structuralarea of a particle reinforced composite is studied by a combinationof experimental and numerical method (hybrid method). With the ex-perimental values of displacements in a micro-region as the boundaryloading condition, strain and stress fields inside the micro-regionare calculated by the finite element method under tow different kindsof model- ing, namely, as pale stress and plane strain condition. Thedifferences between the two kinds of modeling conditions as appliedto micro-structural areas are discussed. 展开更多
关键词 particle reinforced composite real microstructure hybrid method deformation and yield- ing
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部