An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutecti...An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.展开更多
Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried ...Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried out. The effects of pouting temperature, slurry viscosity, vibration time and sand size on surface finish, shrinkage porosity and eutectic silicon spacing of thin-wall casting were investigated. A full two-level factorial design of experimental technique was used to identify the significant manufacturing factors affecting the properties of casting. Pouring temperature was found as the most significant factor affecting A1-Si-Cu lost foam casting quality. It was shown that flask vibration time interacted with pouring temperature influenced euteetic silicon spacing and porosity percentage significantly. The results also revealed that the surface quality of the samples cast in fine sand moulds at higher pouring temperatures was almost unchanged, while those cast in coarse sand moulds possessed lower surface qualities. Furthermore, variation in slurry viscosity showed no significant effect on the evaluated properties compared to other parameters.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The ...The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellu- lar foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.展开更多
The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeute...The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.展开更多
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing ...The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.展开更多
Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of...Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.展开更多
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r...The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.展开更多
At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification micro...At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.展开更多
The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the rehe...The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the reheating process and the coarsening rate increases with the increase of reheating temperature.The eutectic phase is produced in the molten region when quenched in the cold water.The microstructure evolution in the semisolid state can be divided into three stages.The remarkable characteristic of the first stage is only a solid-state phase transformation process.However,the region around the α(Al) matrix gradually melts in the second stage.The primary Si in the liquid phase coarsens obviously,and the eutectic phase is produced in the molten region when the specimens are quenched in cold water.In the last stage,the same thing as that in the second stage happens except that all the α(Al) matrixes are melted.展开更多
The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the los...The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the lost foam casting (LFC) process of the magnesium alloy. Results show that the foam primarily melts into liquid products instead of gasifying at the pouring temperature of the magnesium alloy. Without the vacuum, the metal fills smoothly with a slightly convex metal front, and the velocity of the filling metal is low and continually decreases as the foam is displaced. The mold filling is governed by the removal of foam decomposition products at the foam-metal interface. However, when the vacuum is applied, the mold filling is controlled by the foam decomposition rate at the foam-metal interface. A pronounced irregular and concave metal front is formed. The velocity of the metal front varies tremendously during the mold filling process and is ruleless. The metal velocity increases rapidly, and the vacuum shows a strong interaction effect with the pouring temperature on the metal velocity. As the vacuum continues to increase, the pouring temperature becomes the most significant factor for the mold filling, while both the vacuum effect and the interaction effect between the vacuum and the pouring temperature on the metal velocity are substantially reduced. Based on experimental results, a model for the foam thermal degradation and the removal of decomposition products occurred at the foam-metal interface is presented during the mold filling of the magnesium alloy LFC process under the vacuum.展开更多
The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The resu...The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism.展开更多
Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fractur...Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.展开更多
Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in...Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.展开更多
Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results ...Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.展开更多
The microstructure and mechanical properties of Al-14.6Si castings modified by Cu-P master alloy under different conditions were studied with optical microscope(OM) and mechanical testing and simulation(MTS).The r...The microstructure and mechanical properties of Al-14.6Si castings modified by Cu-P master alloy under different conditions were studied with optical microscope(OM) and mechanical testing and simulation(MTS).The results indicate that the Cu-P master alloy possesses not only obvious modification effect,but also longevity effect with more than 8 h on the hypereutectic Al-Si alloy.It is shown from thermal calculation,scanning electron microscope(SEM),and energy dispersive analysis of X-rays(EDAX) that the modification mechanism of Cu-P on primary silicon in the castings is heterogeneous nucleation around AlP particles.The Cu-P master alloy has no or little modifying effect on eutectic silicon,even though it has obvious modification on primary silicon in the castings.This may be because of the fast transformation of eutectic silicon at a very narrow temperature,which will notably weaken the role of AlP particles as heterogeneous nuclei for eutectic silicon.展开更多
The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are...The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are insensitive to temperature and loading frequency when the temperature is less than a critical temperature Tcrit. However, it increases when the temperature exceeds the Tcrit values, which are 200 and 250°C for the Mg alloy foam and the Mg alloy/SiCp composite foams, respectively. The Mg alloy/SiCp composite foams exhibit a higher damping capacity than the Mg alloy foam when the temperature is below 200°C. By contrast, the Mg alloy foam exhibits a better damping capacity when the temperature exceeds 250°C. The variation in the damping capacity is attributed to differences in the internal friction sources, such as the characteristics of the matrix material, abundant interfaces, and interfacial slipping caused by SiC particles, as well as to macrodefects in the Mg alloy and its composite foams.展开更多
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve...The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.展开更多
An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduc...An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.展开更多
基金Ministry of Science and Technology of Malaysia for funding the research project under E-science Fund Vote No. 79352
文摘An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.
基金the Ministry of Higher Education of Malaysia (MOHE) for the financial support under the vote GUP-Q.J130000.2501.04H18
文摘Controlling process parameters of lost foam casting (LFC) enables this process to produce defect-free complex shape castings. An experimental investigation on lost foam casting of an A1-Si-Cu cast alloy was carried out. The effects of pouting temperature, slurry viscosity, vibration time and sand size on surface finish, shrinkage porosity and eutectic silicon spacing of thin-wall casting were investigated. A full two-level factorial design of experimental technique was used to identify the significant manufacturing factors affecting the properties of casting. Pouring temperature was found as the most significant factor affecting A1-Si-Cu lost foam casting quality. It was shown that flask vibration time interacted with pouring temperature influenced euteetic silicon spacing and porosity percentage significantly. The results also revealed that the surface quality of the samples cast in fine sand moulds at higher pouring temperatures was almost unchanged, while those cast in coarse sand moulds possessed lower surface qualities. Furthermore, variation in slurry viscosity showed no significant effect on the evaluated properties compared to other parameters.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
文摘The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellu- lar foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.
基金Project (U1134101) supported by the Mutual Foundation of Basic Research of High Speed Railway,ChinaProjects (ZR2009FL003,ZR2010EL011,ZR2011EMM003) supported by the Natural Science Foundation of Shandong Province,China
文摘The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金Project(XKY2009035) supported by the Key Laboratory for Ecological-Environment Materials of Jiangsu Province,ChinaProject(11KJD430006) supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(AE201034) supported by the Research Finds of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,China
文摘The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.
基金Project supported by Tsinghua-Wuxi Science Foundation, China
文摘Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.
基金Project(50874022)supported by the National Natural Science Foundation of China
文摘At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.
基金Project (JPPT-125-GH-039) supported by Ministry of Science and Technology of China
文摘The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the reheating process and the coarsening rate increases with the increase of reheating temperature.The eutectic phase is produced in the molten region when quenched in the cold water.The microstructure evolution in the semisolid state can be divided into three stages.The remarkable characteristic of the first stage is only a solid-state phase transformation process.However,the region around the α(Al) matrix gradually melts in the second stage.The primary Si in the liquid phase coarsens obviously,and the eutectic phase is produced in the molten region when the specimens are quenched in cold water.In the last stage,the same thing as that in the second stage happens except that all the α(Al) matrixes are melted.
文摘The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the lost foam casting (LFC) process of the magnesium alloy. Results show that the foam primarily melts into liquid products instead of gasifying at the pouring temperature of the magnesium alloy. Without the vacuum, the metal fills smoothly with a slightly convex metal front, and the velocity of the filling metal is low and continually decreases as the foam is displaced. The mold filling is governed by the removal of foam decomposition products at the foam-metal interface. However, when the vacuum is applied, the mold filling is controlled by the foam decomposition rate at the foam-metal interface. A pronounced irregular and concave metal front is formed. The velocity of the metal front varies tremendously during the mold filling process and is ruleless. The metal velocity increases rapidly, and the vacuum shows a strong interaction effect with the pouring temperature on the metal velocity. As the vacuum continues to increase, the pouring temperature becomes the most significant factor for the mold filling, while both the vacuum effect and the interaction effect between the vacuum and the pouring temperature on the metal velocity are substantially reduced. Based on experimental results, a model for the foam thermal degradation and the removal of decomposition products occurred at the foam-metal interface is presented during the mold filling of the magnesium alloy LFC process under the vacuum.
基金Project(2015M572135)supported by the China Postdoctoral Science FoundationProject(2012CB619600)supported by the National Basic Research Program of China
文摘The effect of iron content on wear behavior of hypereutectic Al?17Si?2Cu?1Ni alloy produced by rheocasting process was investigated. The dry sliding wear tests were carried out with a pin-on-disk wear tester. The results show that the wear rate of the rheocast alloy is lower than that of the alloy produced by conventional casting process under the same applied load. The fine particle-likeδ-Al4(Fe,Mn)Si2 and polygonalα-Al15(Fe,Mn)3Si2 phases help to improve the wear resistance of rheocast alloys. As the volume fraction of fine Fe-bearing compounds increases, the wear rate of the rheocast alloy decreases. Moreover, the wear rate of rheocast alloy increases with the increase of applied load from 50 to 200 N. For the rheocast alloy with 3% Fe, oxidation wear is the main mechanism at low applied load (50 N). At higher applied loads, a combination of delamination and oxidation wear is the dominant wear mechanism.
文摘Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.
基金Project(JPPT-125-GJGG-14-016)supported by Military Supporting Projects of National Defense Science and Technology Industry Committee,China
文摘Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.
基金Project(CDJZR12240056)supported by the Fundamental Research Funds for Central Universities,ChinaProject(cstc2013jcyj A50014)supported by the Foundational and Cutting-edge Research Plan of Chongqing,China
文摘Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.
文摘The microstructure and mechanical properties of Al-14.6Si castings modified by Cu-P master alloy under different conditions were studied with optical microscope(OM) and mechanical testing and simulation(MTS).The results indicate that the Cu-P master alloy possesses not only obvious modification effect,but also longevity effect with more than 8 h on the hypereutectic Al-Si alloy.It is shown from thermal calculation,scanning electron microscope(SEM),and energy dispersive analysis of X-rays(EDAX) that the modification mechanism of Cu-P on primary silicon in the castings is heterogeneous nucleation around AlP particles.The Cu-P master alloy has no or little modifying effect on eutectic silicon,even though it has obvious modification on primary silicon in the castings.This may be because of the fast transformation of eutectic silicon at a very narrow temperature,which will notably weaken the role of AlP particles as heterogeneous nuclei for eutectic silicon.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174060 and 51301109)the Science and Technology Department of Liaoning Province of China (No. 2013223004)the Fundamental Research Funds for the Central Universities (No. 140203004)
文摘The damping properties of an Mg alloy foam and its composite foams were investigated using a dynamic mechanical thermal analyzer. The results show that the loss factors of both the Mg alloy and its composite foams are insensitive to temperature and loading frequency when the temperature is less than a critical temperature Tcrit. However, it increases when the temperature exceeds the Tcrit values, which are 200 and 250°C for the Mg alloy foam and the Mg alloy/SiCp composite foams, respectively. The Mg alloy/SiCp composite foams exhibit a higher damping capacity than the Mg alloy foam when the temperature is below 200°C. By contrast, the Mg alloy foam exhibits a better damping capacity when the temperature exceeds 250°C. The variation in the damping capacity is attributed to differences in the internal friction sources, such as the characteristics of the matrix material, abundant interfaces, and interfacial slipping caused by SiC particles, as well as to macrodefects in the Mg alloy and its composite foams.
基金The project was financially supported by the Hi-tech Research and Development Program of China (No. G2002AA336080) and the National Natural Science Foundation of China (No. 50374012)
文摘The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50625101)the Key Project of Science and Technology Research of the Ministry of Education of China (No. 106103)
文摘An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.