The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed ...The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.展开更多
Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a specia...Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a special alloy was used to inoculate the molten steel, and proper heat treatment was used to further improve mechanical properties of wear resistant ring-hammers. The influence of this new production technology on the microstructure and mechanical properties of wear resistant ring-hammers was studied. Results show that iron sand molding, having the inherent characteristic of sand molding, changes the type of metallic compounds, refines crystal grains and increases the fineness of microstructure. Practical experience verified that the properties of the ring-hammers produced with this new technique are as follows: tensile strength (Rm) 720 MPa, impact toughness (ak) > 210 J·cm-2 and hardness > 200 HB. After water quenching from 1,080℃ (holding for 4 h) and tempering at 320℃ for 3 h, the best wear resistance is obtained, and the wear resistance is 1.6 times higher than that of common high manganese ring-hammers.展开更多
文摘The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.
文摘Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a special alloy was used to inoculate the molten steel, and proper heat treatment was used to further improve mechanical properties of wear resistant ring-hammers. The influence of this new production technology on the microstructure and mechanical properties of wear resistant ring-hammers was studied. Results show that iron sand molding, having the inherent characteristic of sand molding, changes the type of metallic compounds, refines crystal grains and increases the fineness of microstructure. Practical experience verified that the properties of the ring-hammers produced with this new technique are as follows: tensile strength (Rm) 720 MPa, impact toughness (ak) > 210 J·cm-2 and hardness > 200 HB. After water quenching from 1,080℃ (holding for 4 h) and tempering at 320℃ for 3 h, the best wear resistance is obtained, and the wear resistance is 1.6 times higher than that of common high manganese ring-hammers.