To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influenci...To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors.Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deteriorationprocesses including bubble collapse and liquid film drainage. However, the current understanding of asphaltfoaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate theexpansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offeredpromising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were beingsuperseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuringequipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt.However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting thefoaming effect, are still unclear and require further exploration. Future research should primarily focus on thecorrelation between asphalt foaming effect and mixture performance, aiming to guide the practical engineeringapplication of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.展开更多
By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture c...By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.展开更多
The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of differe...The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of different types of warm-mix asphalt(WMA)technologies and additives were evaluated.Aging and improvement mechanisms were investigated by the Fourier transform infrared spectroscopy test.It is found that recycled binders after the secondary aging are more resistant to rutting and less resistant to low-temperature cracking.The two warm-mix asphalt technologies have opposite effects.Using the Sasobit WMA significantly improves the rutting resistance and reduces the low temperature resistance for the recycled binders due to its morphological change at different temperatures.The rutting factor values of recycled asphalt binders with the Sasobit additive increase by 4.6 to 5.6 times.However,using the Evotherm WMA causes the deterioration of the rutting resistance due to the structural lubrication effect.The rutting factor values of recycled asphalt binders with the Evotherm additive show the reduction of 52%to 62%.It is recommended to add the styrene butadiene rubber latex or crumb rubber powder into the warm-mix recycled asphalt binders to simultaneously improve the rutting and low-temperature cracking resistances.展开更多
Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the develop...Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the development and deployment of warm-mix asphalt technologies. Such technologies make it possible to produce and place asphalt concrete at reduced temperatures compared to conventional hot-mix methods. Several studies have reported on the potential of warm-mix asphalt with regard to improved pavement performance, efficiency and environmental stewardship. This paper reviews several of those studies in the context of pavement sustainability. Overall, warm-mix asphalt provides substantial sustainability benefits similar to or, in some cases, better than conventional hot-mix asphalt. Sustainability benefits include lower energy use, reduced emissions, and potential for increased reclaimed asphalt pavement usage. Growth in utilization of warm-mix asphalt worldwide may, in the not-too-distant future, make the material the standard for asphalt paving. Regardless, there are concerns over some aspects of warm-mix asphalt such as lower resistance to fatigue cracking, rutting and potential water-susceptibility problems, particularly with mixes prepared with water-based technologies, which require further research to address.展开更多
The structural design of asphalt foaming device, the determination of foam chamber process and condition parameters are the key technologies to foaming effect of foam asphalt. In this paper, we analyze the research st...The structural design of asphalt foaming device, the determination of foam chamber process and condition parameters are the key technologies to foaming effect of foam asphalt. In this paper, we analyze the research status of foaming mechanism, foaming device design and determination of the various parameters. The paper puts forward opinions for asphalt foaming technology. And development trend of the asphalt foaming technology is analyzed.展开更多
Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additio...Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additional energy consumption during the production of asphalt mixtures,which may cause a higher emission of greenhouse gases.This is undesirable for sustainable development and the environment.In this study,the applicability of diluted methanol and water was comparatively evaluated as foaming agents in the production of warm mix asphalt(WMA)mixtures incorporating latex.Diluted methanol was used because it has a lower boiling point and latent heat than water,allowing the asphalt mixture to be produced at a lower temperature and thus consuming less energy.The performance of the foamed asphalt mixture was investigated through service characteristics,mechanical performance,and moisture susceptibility of mixtures.The service characteristics,on the other hand,were measured in a laboratory while preparing and compacting the asphalt mixture,which refers to the amount of energy required during the production and construction stages in the asphalt plant and on the construction site,respectively.The degree of energy required was assessed based on the workability index,coatability index,and the compaction energy index.The mechanical performance of asphalt mixtures was characterized by indirect tensile strength,resilient modulus,and dynamic creep tests.The resistance to moisture damage was evaluated based on the common parameter,indirect tensile strength ratio.The findings revealed that the use of diluted methanol foaming agent helped improve the workability of latex modified asphalt mixtures.The foamed latex-modified WMA demonstrated better performance compared to asphalt mixtures prepared using water as the foaming agent.展开更多
基金the National Natural Science Foundation of China(Grant No.52378452)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1193)+1 种基金Nanjing Transportation Science and Technology Project(JSZC-320100-HBGLC2023-0037)Nantong Highway Development Center Science and Technology Project(2022PMLQYJ)and 333 High-level Talent Project of Jiangsu Province(6th).
文摘To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors.Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deteriorationprocesses including bubble collapse and liquid film drainage. However, the current understanding of asphaltfoaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate theexpansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offeredpromising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were beingsuperseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuringequipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt.However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting thefoaming effect, are still unclear and require further exploration. Future research should primarily focus on thecorrelation between asphalt foaming effect and mixture performance, aiming to guide the practical engineeringapplication of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.
文摘By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.
基金The Natural Science Foundation of Jiangsu Province(No.BK20181404)Qing Lan Project(2016)the Training Plan Project for Young Core Teachers of Nanjing Forestry University(2017).
文摘The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of different types of warm-mix asphalt(WMA)technologies and additives were evaluated.Aging and improvement mechanisms were investigated by the Fourier transform infrared spectroscopy test.It is found that recycled binders after the secondary aging are more resistant to rutting and less resistant to low-temperature cracking.The two warm-mix asphalt technologies have opposite effects.Using the Sasobit WMA significantly improves the rutting resistance and reduces the low temperature resistance for the recycled binders due to its morphological change at different temperatures.The rutting factor values of recycled asphalt binders with the Sasobit additive increase by 4.6 to 5.6 times.However,using the Evotherm WMA causes the deterioration of the rutting resistance due to the structural lubrication effect.The rutting factor values of recycled asphalt binders with the Evotherm additive show the reduction of 52%to 62%.It is recommended to add the styrene butadiene rubber latex or crumb rubber powder into the warm-mix recycled asphalt binders to simultaneously improve the rutting and low-temperature cracking resistances.
文摘Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the development and deployment of warm-mix asphalt technologies. Such technologies make it possible to produce and place asphalt concrete at reduced temperatures compared to conventional hot-mix methods. Several studies have reported on the potential of warm-mix asphalt with regard to improved pavement performance, efficiency and environmental stewardship. This paper reviews several of those studies in the context of pavement sustainability. Overall, warm-mix asphalt provides substantial sustainability benefits similar to or, in some cases, better than conventional hot-mix asphalt. Sustainability benefits include lower energy use, reduced emissions, and potential for increased reclaimed asphalt pavement usage. Growth in utilization of warm-mix asphalt worldwide may, in the not-too-distant future, make the material the standard for asphalt paving. Regardless, there are concerns over some aspects of warm-mix asphalt such as lower resistance to fatigue cracking, rutting and potential water-susceptibility problems, particularly with mixes prepared with water-based technologies, which require further research to address.
基金Foundation of Xi'an Science Plan(CX12180(4))the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University(CHD2010JC092)
文摘The structural design of asphalt foaming device, the determination of foam chamber process and condition parameters are the key technologies to foaming effect of foam asphalt. In this paper, we analyze the research status of foaming mechanism, foaming device design and determination of the various parameters. The paper puts forward opinions for asphalt foaming technology. And development trend of the asphalt foaming technology is analyzed.
基金The authors express their appreciation to the National Natural Science Foundation of China(NSFC)for providing financial assistance via the Research Fund for the International Young Scientist(Grant No.51750110491)Additionally,acknowledgements are due to Universiti Sains Malaysia for providing financial support via Research University Individual(RUI)Grant 1001.PAWAM.8014140.Authors also would like to recognize supports from Chang'an University,China.Last but not least,special thanks to all technical staff of the Highway Engineering Laboratory,Universiti Sains Malaysia(USM),for their valuable help and support.
文摘Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additional energy consumption during the production of asphalt mixtures,which may cause a higher emission of greenhouse gases.This is undesirable for sustainable development and the environment.In this study,the applicability of diluted methanol and water was comparatively evaluated as foaming agents in the production of warm mix asphalt(WMA)mixtures incorporating latex.Diluted methanol was used because it has a lower boiling point and latent heat than water,allowing the asphalt mixture to be produced at a lower temperature and thus consuming less energy.The performance of the foamed asphalt mixture was investigated through service characteristics,mechanical performance,and moisture susceptibility of mixtures.The service characteristics,on the other hand,were measured in a laboratory while preparing and compacting the asphalt mixture,which refers to the amount of energy required during the production and construction stages in the asphalt plant and on the construction site,respectively.The degree of energy required was assessed based on the workability index,coatability index,and the compaction energy index.The mechanical performance of asphalt mixtures was characterized by indirect tensile strength,resilient modulus,and dynamic creep tests.The resistance to moisture damage was evaluated based on the common parameter,indirect tensile strength ratio.The findings revealed that the use of diluted methanol foaming agent helped improve the workability of latex modified asphalt mixtures.The foamed latex-modified WMA demonstrated better performance compared to asphalt mixtures prepared using water as the foaming agent.