Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynami...Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.展开更多
It is difficult to control the degree of ischemic postconditioning in the brain and other isch- emia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on ...It is difficult to control the degree of ischemic postconditioning in the brain and other isch- emia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on terminal organs. In this study, a focal cerebral ischemia-reperftlsion injury model was established using three cycles of remote ischernic postconditioning, each cycle consisted of 10-minute occlusion of the femoral artery and 10-minute opening. The results showed that, remote ischemic postconditioning significantly decreased the percentage of the in- farct area and attenuated brain edema. In addition, inflammatory nuclear factor-KB expression was significantly lower, while anti-apoptotic Bcl-2 expression was significantly elevated in the ce- rebral cortex on the ischemic side. Our findings indicate that remote ischemic postconditioning attenuates focal cerebral ischemia/reperfusion injury, and that the neuroprotective mechanism is mediated by an anti-apoptotic effect and reduction of the inflammatory response.展开更多
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibusti...Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.展开更多
Heat-sensitive moxibustion has neuroprotective effects against focal cerebral ischemia/reperfusion injury, however its mechanism of action remains unclear. In this study, rat models of focal cerebral ischemia/reperfus...Heat-sensitive moxibustion has neuroprotective effects against focal cerebral ischemia/reperfusion injury, however its mechanism of action remains unclear. In this study, rat models of focal cerebral ischemia/reperfusion injury were treated with suspended moxibustion at acupoint Dazhui (DU14) for 35 minutes. Results showed that suspended moxibustion decreased infarct volume, reduced cortical myeloperoxidase activity, and suppressed serum levels of proinflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Our experimental findings indicated that heat-sensitive moxibustion can attenuate inflammation and promote repair after focal cerebral ischemia/reperfusion injury.展开更多
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi...The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.展开更多
The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ...The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site.展开更多
This study aimed to investigate changes in secretory pathway Ca2+-ATPase 2 expression following cerebral ischemia/reperfusion injury, and to define the role of Ca2+-ATPases in oxidative stress. A rat model of cerebr...This study aimed to investigate changes in secretory pathway Ca2+-ATPase 2 expression following cerebral ischemia/reperfusion injury, and to define the role of Ca2+-ATPases in oxidative stress. A rat model of cerebral ischemia/reperfusion injury was established using the unilateral middle cerebral artery occlusion method. Immunohistochemistry and reverse transcription-PCR assay results showed that compared with the control group, the expression of secretory pathway Ca2+-ATPase 2 protein and mRNA in the cerebral cortex and hippocampus of male rats did not significantly change during the ischemic period. However, secretory pathway Ca2+-ATPase 2 protein and mRNA expression reduced gradually at 1, 3, and 24 hours during the reperfusion period. Our experimental findings indicate that levels of secretory pathway Ca2+-ATPase 2 protein and mRNA expression in brain tissue change in response to cerebral ischemia/reperfusion injury.展开更多
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated lo...Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors.展开更多
BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on in...BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on inducing angiogenesis following ischemia/reperfusion injury can provide better help for the long-term treatment of cerebrovascular disease in clinic. OBJECTIVE: To observe the effect of VEGF on inducing angiogenesis following focal cerebral ischemia /reperfusion injury in rabbits through the angiogenesis of microvessels reflected by the expression of the factors of vascular pseudohemophilia. DESIGN: A randomized controlled animal tria SETTNG: Department of Medical Imaging, Second Hospital of Hebei Medical University MATERIALS: Sixty-five healthy male New Zealand rabbits of clean degree, weighing (2.6±0.2) kg, aged 4.5-5 months, were used. The polyclonal antibody against vascular pseudohemophilia (Beijing Zhongshan Company), recombinant VEGF165 (Peprotech Company, USA), biotinylated second antibody and ABC compound (Wuhan Boster Company) were applied. METHODS: The experiments were carried out in the Laboratory of Neuromolecular Imaging and Neuropathy, Second Hospital of Hebei Medical University from May to August in 2005. (1) The rabbits were randomly divided into three groups: sham-operated group (n=15), control group (n=25) and VEGF-treated group (n=-25). In the control group and VEGF-treated group, models were established by middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia/reperfusion. In the VEGF-treated group, VEGF165 (2.5 mg/L) was stereotactically injected into the surrounding regions of the infarcted sites immediately after the 2-hour ischemia/reperfusion; Saline of the same dosage was injected in the control group. But the rabbits in the sham-operated group were only drilled but not administrated. (2) The experimental indexes were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment respectively, 3 rabbits in the sham-operated group and 5 in the control group and VEGF-treated group were observed at each time point. The brain tissues in the surrounding regions of the infarcted sites were collected. The positive expressions of the factors of vascular pseudohemophilia in vascular endothelial cells were analyzed with immunohistochemical method. The microvessels in unit statistical field were counted with the imaging analytical software. MAIN OUTCOME MEASURES: The changes of microvascular density in the brain tissue and the positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of the infarcted sites were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment. RESULTS: All the 65 New Zealand rabbits were involved in the analysis of results without deletion. Changes of the number of microvessels at different time points in each group: There were no obvious changes at different time points in the sham-operated group. The numbers of microvessels at 7 and 14 days were obviously more in the control group than in the sham-operated group [(6.0±1.1), (9.0±0.9) microvessels; (3.0±1.1), (3.0±1.1) microvessels; P〈 0.05-0.01], and those at 3, 7, 14 and 28 days were obviously more in the VEGF-treated group than in the control group [(8.3±2.0), (13.4±1.4), (15.5±2.3), (6.8± 1.0) microvessels; (3.4±0.6), (6.0±1.1), (9.0±0.9), (3.2±0.8) microvessels; P 〈 0.01]. (2) Positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of infarcted sites: There were no obvious changes at different time points in the sham-operated group. In the control group, the changing law of the expressions was the same as that for the number of microvessels that the expression began to mildly increase at 7 days, reached the peak value at 14 days, and began to reduce at 28 days. In the VEGF-treated group, the expression was obviously increased at 3 days, also reached the peak value at 14 days, and reduced to the normal level at 70 days, but the expressions were obviously stronger than those in the control group at the same time points. CONCLUSION: Angiogenesis can be obviously induced in rabbits after the focal cerebral ischemia/reperfusion injury is treated with VEGF for 18 days.展开更多
Objective: To determine whether hyperglycemia could aggravate the microvascular damage in ischemic stroke. Methods: Hyperglycemia model was made by injection of streptozocin through subcutaneous injection in wistar ...Objective: To determine whether hyperglycemia could aggravate the microvascular damage in ischemic stroke. Methods: Hyperglycemia model was made by injection of streptozocin through subcutaneous injection in wistar rats. Using the suture model, the rats were subjected to 3h of focal ischemia and different times of reperfusion, including 6,12,24,48,96h and 7d. TIC dyeing was used to Show the infarction area of rats. The infarctive volume of rats were calculated by computer imaging analysis system;Matrix metalloproteinase (MMP-2) and (MMP-9)were detected by immunohistochemistly and in situ hybridization histochemistly in Wistar rats. Results: The infarctive volume was siginificantly larger in hyperglycemic rats than that of nonhyperglycemic rats. The level of MMP-2, MMP-9 expression in the group of hyperglycemic rats was higher than that of nonhyperglycemic rats. Conclusion: Hyperglycemia aggravated the injury of focal ischmia-repeffusion in wistar rats and the higher expression of MMP-2,MMP-9 might be one of the mechanism in aggravation of focal ischemia/repeffusion injury.展开更多
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv...Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.展开更多
[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total...[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI.展开更多
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustraz...Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine.展开更多
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival...Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.展开更多
Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ische...Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin (100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023a grant from the Science and Technology Plan Project of Shinan District of Qingdao City of China,No.2016-3-029-YY
文摘Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.
基金supported by the Natural Science Foundation(Joint Fund)of Liaoning Provincial Science and Technology Department,No.2013022021
文摘It is difficult to control the degree of ischemic postconditioning in the brain and other isch- emia-sensitive organs. Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on terminal organs. In this study, a focal cerebral ischemia-reperftlsion injury model was established using three cycles of remote ischernic postconditioning, each cycle consisted of 10-minute occlusion of the femoral artery and 10-minute opening. The results showed that, remote ischemic postconditioning significantly decreased the percentage of the in- farct area and attenuated brain edema. In addition, inflammatory nuclear factor-KB expression was significantly lower, while anti-apoptotic Bcl-2 expression was significantly elevated in the ce- rebral cortex on the ischemic side. Our findings indicate that remote ischemic postconditioning attenuates focal cerebral ischemia/reperfusion injury, and that the neuroprotective mechanism is mediated by an anti-apoptotic effect and reduction of the inflammatory response.
基金supported by the National Natural Science Foundation of China,No.81060305&81660819the Natural Science Foundation of Jiangxi Province of China,No.2015BAB205068+2 种基金Key Program for Science and Technology Cooperation Projects of Jiangxi Province of China,No.20161BBH80053a grant from the Key Project of Health Commission of Jiangxi Province of China,No.2014Z003the Natural Science Foundation of Jiangxi University of Traditional Chinese Medicine of China,No.2014ZR018&2015jzzdxk024
文摘Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury.
基金supported by the National Natural Science Foundation of China, No. 81060305
文摘Heat-sensitive moxibustion has neuroprotective effects against focal cerebral ischemia/reperfusion injury, however its mechanism of action remains unclear. In this study, rat models of focal cerebral ischemia/reperfusion injury were treated with suspended moxibustion at acupoint Dazhui (DU14) for 35 minutes. Results showed that suspended moxibustion decreased infarct volume, reduced cortical myeloperoxidase activity, and suppressed serum levels of proinflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Our experimental findings indicated that heat-sensitive moxibustion can attenuate inflammation and promote repair after focal cerebral ischemia/reperfusion injury.
基金financially supported by grants from the National Natural Science Foundation of China,No.81371346,81271376Outstanding Postgraduate Fund of Xinxiang Medical UniversityScience and Technology Key Research Project of Henan Provincial Education Department of China,No.14A310019
文摘The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.
基金a Grant from the Liaoning Provincial Education Department, No. 05L485
文摘The time point at which bone marrow-derived mesenchymal stem cells(BMSCs)can be used in transplantation for the treatment of ischemic brain injury remains unclear.In the present study,BMSCs were transplanted to the ischemic site 90 minutes post-ischemia.The results demonstrated that the transplanted BMSCs improved neurological function,reduced infarct volume,increased survivin expression,decreased caspase-3 expression and reduced apoptosis.This suggests that BMSCs transplanted at an ultra-early stage ameliorated brain ischemia by increasing survivin expression,decreasing caspase-3 expression and reducing apoptosis at the ischemia/reperfusion injury site.
基金supported by the National Natural Science Foundation of China,No.81171239Frontier Research Project of Central South University in China,No.2177-721500065the Graduate Degree Thesis Innovation Foundation of Central South University in China
文摘This study aimed to investigate changes in secretory pathway Ca2+-ATPase 2 expression following cerebral ischemia/reperfusion injury, and to define the role of Ca2+-ATPases in oxidative stress. A rat model of cerebral ischemia/reperfusion injury was established using the unilateral middle cerebral artery occlusion method. Immunohistochemistry and reverse transcription-PCR assay results showed that compared with the control group, the expression of secretory pathway Ca2+-ATPase 2 protein and mRNA in the cerebral cortex and hippocampus of male rats did not significantly change during the ischemic period. However, secretory pathway Ca2+-ATPase 2 protein and mRNA expression reduced gradually at 1, 3, and 24 hours during the reperfusion period. Our experimental findings indicate that levels of secretory pathway Ca2+-ATPase 2 protein and mRNA expression in brain tissue change in response to cerebral ischemia/reperfusion injury.
基金supported by the Science and Technology Program of Suzhou Industrial Park in China
文摘Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors.
文摘BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on inducing angiogenesis following ischemia/reperfusion injury can provide better help for the long-term treatment of cerebrovascular disease in clinic. OBJECTIVE: To observe the effect of VEGF on inducing angiogenesis following focal cerebral ischemia /reperfusion injury in rabbits through the angiogenesis of microvessels reflected by the expression of the factors of vascular pseudohemophilia. DESIGN: A randomized controlled animal tria SETTNG: Department of Medical Imaging, Second Hospital of Hebei Medical University MATERIALS: Sixty-five healthy male New Zealand rabbits of clean degree, weighing (2.6±0.2) kg, aged 4.5-5 months, were used. The polyclonal antibody against vascular pseudohemophilia (Beijing Zhongshan Company), recombinant VEGF165 (Peprotech Company, USA), biotinylated second antibody and ABC compound (Wuhan Boster Company) were applied. METHODS: The experiments were carried out in the Laboratory of Neuromolecular Imaging and Neuropathy, Second Hospital of Hebei Medical University from May to August in 2005. (1) The rabbits were randomly divided into three groups: sham-operated group (n=15), control group (n=25) and VEGF-treated group (n=-25). In the control group and VEGF-treated group, models were established by middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia/reperfusion. In the VEGF-treated group, VEGF165 (2.5 mg/L) was stereotactically injected into the surrounding regions of the infarcted sites immediately after the 2-hour ischemia/reperfusion; Saline of the same dosage was injected in the control group. But the rabbits in the sham-operated group were only drilled but not administrated. (2) The experimental indexes were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment respectively, 3 rabbits in the sham-operated group and 5 in the control group and VEGF-treated group were observed at each time point. The brain tissues in the surrounding regions of the infarcted sites were collected. The positive expressions of the factors of vascular pseudohemophilia in vascular endothelial cells were analyzed with immunohistochemical method. The microvessels in unit statistical field were counted with the imaging analytical software. MAIN OUTCOME MEASURES: The changes of microvascular density in the brain tissue and the positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of the infarcted sites were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment. RESULTS: All the 65 New Zealand rabbits were involved in the analysis of results without deletion. Changes of the number of microvessels at different time points in each group: There were no obvious changes at different time points in the sham-operated group. The numbers of microvessels at 7 and 14 days were obviously more in the control group than in the sham-operated group [(6.0±1.1), (9.0±0.9) microvessels; (3.0±1.1), (3.0±1.1) microvessels; P〈 0.05-0.01], and those at 3, 7, 14 and 28 days were obviously more in the VEGF-treated group than in the control group [(8.3±2.0), (13.4±1.4), (15.5±2.3), (6.8± 1.0) microvessels; (3.4±0.6), (6.0±1.1), (9.0±0.9), (3.2±0.8) microvessels; P 〈 0.01]. (2) Positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of infarcted sites: There were no obvious changes at different time points in the sham-operated group. In the control group, the changing law of the expressions was the same as that for the number of microvessels that the expression began to mildly increase at 7 days, reached the peak value at 14 days, and began to reduce at 28 days. In the VEGF-treated group, the expression was obviously increased at 3 days, also reached the peak value at 14 days, and reduced to the normal level at 70 days, but the expressions were obviously stronger than those in the control group at the same time points. CONCLUSION: Angiogenesis can be obviously induced in rabbits after the focal cerebral ischemia/reperfusion injury is treated with VEGF for 18 days.
文摘Objective: To determine whether hyperglycemia could aggravate the microvascular damage in ischemic stroke. Methods: Hyperglycemia model was made by injection of streptozocin through subcutaneous injection in wistar rats. Using the suture model, the rats were subjected to 3h of focal ischemia and different times of reperfusion, including 6,12,24,48,96h and 7d. TIC dyeing was used to Show the infarction area of rats. The infarctive volume of rats were calculated by computer imaging analysis system;Matrix metalloproteinase (MMP-2) and (MMP-9)were detected by immunohistochemistly and in situ hybridization histochemistly in Wistar rats. Results: The infarctive volume was siginificantly larger in hyperglycemic rats than that of nonhyperglycemic rats. The level of MMP-2, MMP-9 expression in the group of hyperglycemic rats was higher than that of nonhyperglycemic rats. Conclusion: Hyperglycemia aggravated the injury of focal ischmia-repeffusion in wistar rats and the higher expression of MMP-2,MMP-9 might be one of the mechanism in aggravation of focal ischemia/repeffusion injury.
文摘Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.
基金Supported by Foundation of Anhui Academy of Medical Sciences(YKY2018006)
文摘[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI.
基金supported by a grant from the Health and Family Planning Commission of Heilongjiang Province Research Project in China,No.2014-195the Education Department Science and Technology Foundation of Heilongjiang Province in China,No.12531741the Natural Science Foundation of Heilongjiang Province of China,No.H2015083
文摘Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine.
文摘Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.
基金supported by the Chinese Traditional Medical Science Foundation of Zhejiang Province in China,No.2010ZA072the Health Bureau Foundation of Zhejiang Province in China,No.2012ZDA023the Qianjiang Project of Zhejiang Science and Technology Bureau in China,No.2010 R10073
文摘Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin (100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors.