The Study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin. The Khaftar anticline is located in the West, North-West of Jahrom city in the Fars province (148 km distance from...The Study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin. The Khaftar anticline is located in the West, North-West of Jahrom city in the Fars province (148 km distance from Persian Gulf). The trend of Khaftar anticline has three orientations, consist of North-Northeast, East-West and South-Southwest. This anticline has asymmetric structure and some faults with large strike separation observed in this anticline. In the study area, stratigraphic units are affected by many faults in this area. Also one salt plug cropping out in the middle part of the Khaftar anticline. Maybe this salt plug affected on the stratigraphic units and geometry of structure. Description of fold geometry is important because it allows comparisons within and between folds and allow us to recognize patterns in the occurrence and distribution of fold systems. The main aim of this paper is determination of fold style elements and folding pattern of the Khaftar anticline. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on satellite images, geological maps, and well data. Some data, such as geological maps and geological regional data were prepared and provided by the National Iranian Oil Company (NIOC). Because of the Khaftar anticline, has complex structure, the analysis of fold style elements is seems necessary. Therefore, in further studies on this structure the changes of fold style elements will be analyzed and investigated from east to west in the different parts of this anticline. The activity of Nezamabad sinistral strike slip fault in the Khaftar anticline causes changes of axial plane characteristics and fold axis. Some of the results such as folding style analysis, how position of salt plug, changes of fold type and main structural changes (rotation of fold axis and 2.5 km displacement in this anticline) show main changes in the middle parts of the Khaftar anticline. It seems that, these changes have formed by activity of the Nezamabad fault and this fault’s activity same as fault zone.展开更多
The Pishvar anticline with Northwest-Southeast trend is located in the Sub-Coastal Fars area. This anticline with 80 Km length and 5 - 7 Km width is located in western part of the Lar area. The Pishvar anticline has t...The Pishvar anticline with Northwest-Southeast trend is located in the Sub-Coastal Fars area. This anticline with 80 Km length and 5 - 7 Km width is located in western part of the Lar area. The Pishvar anticline has two closures that are separated together by smooth down-warp. The oldest units that have outcropped on the surfaces are Asmari and Jahrom Formations. The most faults that observed on the Pishvar anticline are Normal fault. In the study area, the Razak and Hendurabi faults are main faults. These faults are strike slip with sinistral displacement. This anticline has greater dip in Northern flank compared to Southern flank. In this research, the main aim is folding style analysis, based on Description of fold geometry for indicate hydrocarbon trap structure in the Pishvar anticline. Description of fold geometry is important because they allow comparisons within and between folds and pattern-recognition in addition to occurrence and distribution of fold systems. We used Tectonics FP and Global Mapper Software for prepared some data in our study. In addition, we used the common classification of folds for our research. Based on results, the folding pattern of this anticline has indicated the fold style has different type in different parts of the Pishvar anticline. According to fold style variation and deformation analysis from B-B’ to C-C’ parts of the study anticline, it seems that the location of the Razak sinistral strike slip fault has existed in this parts. Fold style change can show this case. In addition, fold style variation and deformation analysis from E-E’ to F-F’ parts of this anticline has been affected of the secondary fault that is related to the Razak sinistral strike slip fault. We introduced this fault for first time. Finally, Based on results in this research, in western part there is little probability for access to hydrocarbon trap in upper horizons, unless the exploratory drilling continues to the deeper horizons.展开更多
The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoir...The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoirs in the world. Structures in this area have complications and the study anticline has unique structures in the Fars region. In the study area, the Kuh-e Qazi anticline due to special fold style and rotation toward Northeast is the unique structure between anticlines of the Zagros belt. This anticline is fault bend fold and plunge of the anticline in eastern part rotated toward Northeast along with the Nezamabad fault trend. In this area, the Kuh-e Qazi anticline has asymmetric structures and some faults such as the Nezamabad and the Sarvestan strike slip fault effect on this anticline. The geometry of anticlines in the Zagros fold-thrust belt is affected by the type of deformation and mechanical behavior of stratigraphic units specially detachment units. The purpose of this research is to determine of folding pattern of the Kuh-e Qazi anticline and define structural features affected on them in the study area. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply Folded Belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. Also, we use some software as Global Mapper and Tectonics FP for preparing some data.?Based on the research, which have been done, the boundary between ductile and frictional substrates causes rotation as a result of lateral, along-strike migration of the ductile substrate. The ductile or viscose layer in the study area is Hormuz Series. Due to lack or thinning of Hormuz salt over the Gavbandi basement high and in the eastern side of the Nezamabad basement fault, causes translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest unlike foreland basin due to the Nezamabad fault activity. This style between all of the anticlines in the study area is unique that rotates unlike foreland basin. In addition, influence on anticlockwise rotation, extensional stress has been created and then salt dome cropping out in Southeast of the Kuh-Qazi anticline. One of the best evidence for effect of extensional stress is triangular facets in this part of the study anticline. Based on folding analysis (geometry of axial plane and fold orientation), it is clearly confirmed that the translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest has been formed by basement fault activity as the Nezamabad fault in the boundary between ductile and frictional substrates of the study area.展开更多
The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with ...The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with Northwest-Southeast trend. The Sarvestan fault zone has caused main deformation by dextral strike slip activity in southern part of the Zagros fold-thrust belt. The main aim of this paper is to determine of fold style elements and folding pattern of the Kuh-e Siah anticline. This paper presents part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. In addition, we used some software as Global Mapper and Tectonics FP for prepared some data. Folds, which are close sideways, are neutral and these require special attention. It is remarkable that, in all sections of the Kuh-e Siah anticline, fold type is close and in the middle part of the anticline, fold type is different with other parts. In the middle part, fold type is upright-moderately gently plunging. On the other hand, in northwestern and southeastern parts fold type is similar together. These results maybe show that fold style follow that fold sigmoidal shape that created with two-fault segment of the Sarvestan fault zone in the study area. Therefore, it seems that the Kuh-e Siah anticline has suffered high deformation in the Sarvestan fault zone and this fault zone has created shear zone.展开更多
The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. Thi...The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. This anticlinal structure is located in the Coastal Fars sub-basin and is bounded from North by the Varavi gas field, from South by the Kuh-e Madar anticline, from East by Assaluyeh gas field and from West by Kuh-e Dehnow anticline. Its length is about 80 km and width is about 15 km. This structure is asymmetric anticline and is located with irregular near the Assaluyeh gas field. The Tabnak gas field is deepest structure between anticlines in the Coastal Fars area. This gas field has a special place for accommodating the enormous Hydrocarbon resources and for this reason, it is very important for Iran country. In this structure, the Dashtak, Kangan and upper Dalan Formations have Hydrocarbon. Analysis and description of fold style elements are essential for structural studies. Based on this case, the comparison of the fold styles and folding mechanism is possible. The main aim in this research is the analysis of the fold style elements of the Tabnak anticline for determining the folding pattern and tectonic regime on this structure. This case has very important for Hydrocarbon exploration between gas fields in the Fars area. In this research, we used the Tectonics FP software, Global Mapper software and geological maps and reports of Iranian National Oil Company. In addition, we used common classification of fold for indicating folding mechanism of the Tabnak anticlinal structure. Based on analysis of the fold style elements, the Tabnak anticlinal structure has variation in fold style. This structure has three different fold styles in different parts. The changes of fold axis, axial plane characteristics and fold classification confirmed several fold styles in different parts of the Tabnak anticline. These changes are observed specially in B-B', F-F' and G-G' sections of this anticline. It seems that these parts have been suffered more deformation in the study anticline. In addition, based on interlimb and folding angle, fold type is close type in all of parts. The close type required more accuracy, because the close type may be ensigns of complication regime. In the study area, G-G' and F-F' section of the Tabnak gas field probable show folding style changes have been affected by Gavbandy Paleo-high.展开更多
A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, s...A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.展开更多
文摘The Study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin. The Khaftar anticline is located in the West, North-West of Jahrom city in the Fars province (148 km distance from Persian Gulf). The trend of Khaftar anticline has three orientations, consist of North-Northeast, East-West and South-Southwest. This anticline has asymmetric structure and some faults with large strike separation observed in this anticline. In the study area, stratigraphic units are affected by many faults in this area. Also one salt plug cropping out in the middle part of the Khaftar anticline. Maybe this salt plug affected on the stratigraphic units and geometry of structure. Description of fold geometry is important because it allows comparisons within and between folds and allow us to recognize patterns in the occurrence and distribution of fold systems. The main aim of this paper is determination of fold style elements and folding pattern of the Khaftar anticline. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on satellite images, geological maps, and well data. Some data, such as geological maps and geological regional data were prepared and provided by the National Iranian Oil Company (NIOC). Because of the Khaftar anticline, has complex structure, the analysis of fold style elements is seems necessary. Therefore, in further studies on this structure the changes of fold style elements will be analyzed and investigated from east to west in the different parts of this anticline. The activity of Nezamabad sinistral strike slip fault in the Khaftar anticline causes changes of axial plane characteristics and fold axis. Some of the results such as folding style analysis, how position of salt plug, changes of fold type and main structural changes (rotation of fold axis and 2.5 km displacement in this anticline) show main changes in the middle parts of the Khaftar anticline. It seems that, these changes have formed by activity of the Nezamabad fault and this fault’s activity same as fault zone.
文摘The Pishvar anticline with Northwest-Southeast trend is located in the Sub-Coastal Fars area. This anticline with 80 Km length and 5 - 7 Km width is located in western part of the Lar area. The Pishvar anticline has two closures that are separated together by smooth down-warp. The oldest units that have outcropped on the surfaces are Asmari and Jahrom Formations. The most faults that observed on the Pishvar anticline are Normal fault. In the study area, the Razak and Hendurabi faults are main faults. These faults are strike slip with sinistral displacement. This anticline has greater dip in Northern flank compared to Southern flank. In this research, the main aim is folding style analysis, based on Description of fold geometry for indicate hydrocarbon trap structure in the Pishvar anticline. Description of fold geometry is important because they allow comparisons within and between folds and pattern-recognition in addition to occurrence and distribution of fold systems. We used Tectonics FP and Global Mapper Software for prepared some data in our study. In addition, we used the common classification of folds for our research. Based on results, the folding pattern of this anticline has indicated the fold style has different type in different parts of the Pishvar anticline. According to fold style variation and deformation analysis from B-B’ to C-C’ parts of the study anticline, it seems that the location of the Razak sinistral strike slip fault has existed in this parts. Fold style change can show this case. In addition, fold style variation and deformation analysis from E-E’ to F-F’ parts of this anticline has been affected of the secondary fault that is related to the Razak sinistral strike slip fault. We introduced this fault for first time. Finally, Based on results in this research, in western part there is little probability for access to hydrocarbon trap in upper horizons, unless the exploratory drilling continues to the deeper horizons.
文摘The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoirs in the world. Structures in this area have complications and the study anticline has unique structures in the Fars region. In the study area, the Kuh-e Qazi anticline due to special fold style and rotation toward Northeast is the unique structure between anticlines of the Zagros belt. This anticline is fault bend fold and plunge of the anticline in eastern part rotated toward Northeast along with the Nezamabad fault trend. In this area, the Kuh-e Qazi anticline has asymmetric structures and some faults such as the Nezamabad and the Sarvestan strike slip fault effect on this anticline. The geometry of anticlines in the Zagros fold-thrust belt is affected by the type of deformation and mechanical behavior of stratigraphic units specially detachment units. The purpose of this research is to determine of folding pattern of the Kuh-e Qazi anticline and define structural features affected on them in the study area. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply Folded Belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. Also, we use some software as Global Mapper and Tectonics FP for preparing some data.?Based on the research, which have been done, the boundary between ductile and frictional substrates causes rotation as a result of lateral, along-strike migration of the ductile substrate. The ductile or viscose layer in the study area is Hormuz Series. Due to lack or thinning of Hormuz salt over the Gavbandi basement high and in the eastern side of the Nezamabad basement fault, causes translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest unlike foreland basin due to the Nezamabad fault activity. This style between all of the anticlines in the study area is unique that rotates unlike foreland basin. In addition, influence on anticlockwise rotation, extensional stress has been created and then salt dome cropping out in Southeast of the Kuh-Qazi anticline. One of the best evidence for effect of extensional stress is triangular facets in this part of the study anticline. Based on folding analysis (geometry of axial plane and fold orientation), it is clearly confirmed that the translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest has been formed by basement fault activity as the Nezamabad fault in the boundary between ductile and frictional substrates of the study area.
文摘The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with Northwest-Southeast trend. The Sarvestan fault zone has caused main deformation by dextral strike slip activity in southern part of the Zagros fold-thrust belt. The main aim of this paper is to determine of fold style elements and folding pattern of the Kuh-e Siah anticline. This paper presents part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. In addition, we used some software as Global Mapper and Tectonics FP for prepared some data. Folds, which are close sideways, are neutral and these require special attention. It is remarkable that, in all sections of the Kuh-e Siah anticline, fold type is close and in the middle part of the anticline, fold type is different with other parts. In the middle part, fold type is upright-moderately gently plunging. On the other hand, in northwestern and southeastern parts fold type is similar together. These results maybe show that fold style follow that fold sigmoidal shape that created with two-fault segment of the Sarvestan fault zone in the study area. Therefore, it seems that the Kuh-e Siah anticline has suffered high deformation in the Sarvestan fault zone and this fault zone has created shear zone.
文摘The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. This anticlinal structure is located in the Coastal Fars sub-basin and is bounded from North by the Varavi gas field, from South by the Kuh-e Madar anticline, from East by Assaluyeh gas field and from West by Kuh-e Dehnow anticline. Its length is about 80 km and width is about 15 km. This structure is asymmetric anticline and is located with irregular near the Assaluyeh gas field. The Tabnak gas field is deepest structure between anticlines in the Coastal Fars area. This gas field has a special place for accommodating the enormous Hydrocarbon resources and for this reason, it is very important for Iran country. In this structure, the Dashtak, Kangan and upper Dalan Formations have Hydrocarbon. Analysis and description of fold style elements are essential for structural studies. Based on this case, the comparison of the fold styles and folding mechanism is possible. The main aim in this research is the analysis of the fold style elements of the Tabnak anticline for determining the folding pattern and tectonic regime on this structure. This case has very important for Hydrocarbon exploration between gas fields in the Fars area. In this research, we used the Tectonics FP software, Global Mapper software and geological maps and reports of Iranian National Oil Company. In addition, we used common classification of fold for indicating folding mechanism of the Tabnak anticlinal structure. Based on analysis of the fold style elements, the Tabnak anticlinal structure has variation in fold style. This structure has three different fold styles in different parts. The changes of fold axis, axial plane characteristics and fold classification confirmed several fold styles in different parts of the Tabnak anticline. These changes are observed specially in B-B', F-F' and G-G' sections of this anticline. It seems that these parts have been suffered more deformation in the study anticline. In addition, based on interlimb and folding angle, fold type is close type in all of parts. The close type required more accuracy, because the close type may be ensigns of complication regime. In the study area, G-G' and F-F' section of the Tabnak gas field probable show folding style changes have been affected by Gavbandy Paleo-high.
文摘A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.