This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
Multidisciplinary feasible method (MDF) is conventional method to multidisciplinary optimization (MDO) and well-understood by users. It reduces the dimensions of the multidisciplinary optimization problem by using the...Multidisciplinary feasible method (MDF) is conventional method to multidisciplinary optimization (MDO) and well-understood by users. It reduces the dimensions of the multidisciplinary optimization problem by using the design variables as independent optimization variables. However, at each iteration of the conventional optimization procedure, multidisciplinary analysis (MDA) is numerously performed that results in extreme expense and low optimization efficiency. The intrinsic weakness of MDF is due to the times that it loop fixed-point iterations in MDA, which drive us to improve MDF by building inexpensive approximations as surrogates for expensive MDA. An simple example is presented to demonstrate the usefulness of the improved MDF. Results show that a significant reduction in the number of multidisciplinary analysis required for optimization is obtained as compared with original MDF and the efficiency of optimization is increased.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpin...In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpinski gasket S can be approximated by {Pn(S)} with Pn(S)/(l + l/2n-3)s≤Hs(S)≤ Pn(S). An algorithm is presented to get Pn(S) for n ≤5. As an application, we obtain the best lower bound of Hs(S) till now: Hs(S)≥0.5631.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K ...Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).展开更多
In many industrial applications,heat transfer and tangent hyperbolic fluid flow processes have been garnering increasing attention,owing to their immense importance in technology,engineering,and science.These processe...In many industrial applications,heat transfer and tangent hyperbolic fluid flow processes have been garnering increasing attention,owing to their immense importance in technology,engineering,and science.These processes are relevant for polymer solutions,porous industrial materials,ceramic processing,oil recovery,and fluid beds.The present tangent hyperbolic fluid flow and heat transfer model accurately predicts the shear-thinning phenomenon and describes the blood flow characteristics.Therefore,the entropy production analysis of a non-Newtonian tangent hyperbolic material flow through a vertical microchannel with a quadratic density temperature fluctuation(quadratic/nonlinear Boussinesq approximation)is performed in the present study.The impacts of the hydrodynamic flow and Newton’s thermal conditions on the flow,heat transfer,and entropy generation are analyzed.The governing nonlinear equations are solved with the spectral quasi-linearization method(SQLM).The obtained results are compared with those calculated with a finite element method and the bvp4c routine.In addition,the effects of key parameters on the velocity of the hyperbolic tangent material,the entropy generation,the temperature,and the Nusselt number are discussed.The entropy generation increases with the buoyancy force,the pressure gradient factor,the non-linear convection,and the Eckert number.The non-Newtonian fluid factor improves the magnitude of the velocity field.The power-law index of the hyperbolic fluid and the Weissenberg number are found to be favorable for increasing the temperature field.The buoyancy force caused by the nonlinear change in the fluid density versus temperature improves the thermal energy of the system.展开更多
By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive...By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling condit...Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling conditions. We adopt a 6-DOF weakly nonlinear time domain model to predict the ship motions of parametric rolling conditions. Unlike previous flare slamming analysis, our proposed method takes roll motion into account to calculate the impact angle and relative vertical velocity between ship sections on the bow flare and wave surface. We use the Wagner model to analyze the slamming impact forces and the slamming occurrence probability. Through numerical simulations, we investigate the maximum flare slamming pressures of a container ship for different speeds and wave conditions. To further clarify the mechanism of flare slamming phenomena in parametric rolling conditions, we also conduct real-time simulations to determine the relationship between slamming pressure and 3-DOF motions, namely roll, pitch, and heave.展开更多
In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation ...In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and...In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.展开更多
We propose a class of iteration methods searching the best approximately generalized polynomial, which has parallel computational function and converges to the exact solution quadratically. We first transform it into ...We propose a class of iteration methods searching the best approximately generalized polynomial, which has parallel computational function and converges to the exact solution quadratically. We first transform it into a special system of nonlinear equations with constraint, then by using to certain iteration method, we combine the two basic processes of the Remes method into a whole such that the iterative process of the system of nonlinear equations and the computation of the solution to the system of linear equations proceed alternately. A lot of numerical examples show that this method not only has good convergence property but also always converges to the exact solution of the problem accurately and rapidly for almost all initial approximations .展开更多
In this paper, we present a method for solving coupled problem. This method is mainly based on the successive approximations method. The external force acting on the structure is replaced by λ = p (x1, H + u (x1, λ)...In this paper, we present a method for solving coupled problem. This method is mainly based on the successive approximations method. The external force acting on the structure is replaced by λ = p (x1, H + u (x1, λ)). Then we have a nonlinear equation of unknown?λ to solve by successive approximations method. By this method, we obtain easily the analytic expression of the displacement. In addition, good results are obtained with only a few iterations.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘Multidisciplinary feasible method (MDF) is conventional method to multidisciplinary optimization (MDO) and well-understood by users. It reduces the dimensions of the multidisciplinary optimization problem by using the design variables as independent optimization variables. However, at each iteration of the conventional optimization procedure, multidisciplinary analysis (MDA) is numerously performed that results in extreme expense and low optimization efficiency. The intrinsic weakness of MDF is due to the times that it loop fixed-point iterations in MDA, which drive us to improve MDF by building inexpensive approximations as surrogates for expensive MDA. An simple example is presented to demonstrate the usefulness of the improved MDF. Results show that a significant reduction in the number of multidisciplinary analysis required for optimization is obtained as compared with original MDF and the efficiency of optimization is increased.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
文摘In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gasket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdorff measure Hs(S) of the Sierpinski gasket S can be approximated by {Pn(S)} with Pn(S)/(l + l/2n-3)s≤Hs(S)≤ Pn(S). An algorithm is presented to get Pn(S) for n ≤5. As an application, we obtain the best lower bound of Hs(S) till now: Hs(S)≥0.5631.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘Let K be a closed convex subset of a real reflexive Banach space E, T:K→K be a nonexpansive mapping, and f:K→K be a fixed weakly contractive (may not be contractive) mapping. Then for any t∈(0, 1), let x1∈K be the unique fixed point of the weak contraction x1→tf(x)+(1-t)Tx. If T has a fixed point and E admits a weakly sequentially continuous duality mapping from E to E^*, then it is shown that {xt} converges to a fixed point of T as t→0. The results presented here improve and generalize the corresponding results in (Xu, 2004).
文摘In many industrial applications,heat transfer and tangent hyperbolic fluid flow processes have been garnering increasing attention,owing to their immense importance in technology,engineering,and science.These processes are relevant for polymer solutions,porous industrial materials,ceramic processing,oil recovery,and fluid beds.The present tangent hyperbolic fluid flow and heat transfer model accurately predicts the shear-thinning phenomenon and describes the blood flow characteristics.Therefore,the entropy production analysis of a non-Newtonian tangent hyperbolic material flow through a vertical microchannel with a quadratic density temperature fluctuation(quadratic/nonlinear Boussinesq approximation)is performed in the present study.The impacts of the hydrodynamic flow and Newton’s thermal conditions on the flow,heat transfer,and entropy generation are analyzed.The governing nonlinear equations are solved with the spectral quasi-linearization method(SQLM).The obtained results are compared with those calculated with a finite element method and the bvp4c routine.In addition,the effects of key parameters on the velocity of the hyperbolic tangent material,the entropy generation,the temperature,and the Nusselt number are discussed.The entropy generation increases with the buoyancy force,the pressure gradient factor,the non-linear convection,and the Eckert number.The non-Newtonian fluid factor improves the magnitude of the velocity field.The power-law index of the hyperbolic fluid and the Weissenberg number are found to be favorable for increasing the temperature field.The buoyancy force caused by the nonlinear change in the fluid density versus temperature improves the thermal energy of the system.
文摘By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
基金supported by the ChinaMinistry of Education Key Research Project "KSHIP-II Project"(Knowledge-based Ship Design Hyper-Integrated Platform)No.GKZY010004the National Key Basic Research Program of China No.2014CB046804
文摘Since the research of flare slamming prediction is seldom when parametric rolling happens, we present an efficient approximation method for flare slamming analysis of large container ships in parametric rolling conditions. We adopt a 6-DOF weakly nonlinear time domain model to predict the ship motions of parametric rolling conditions. Unlike previous flare slamming analysis, our proposed method takes roll motion into account to calculate the impact angle and relative vertical velocity between ship sections on the bow flare and wave surface. We use the Wagner model to analyze the slamming impact forces and the slamming occurrence probability. Through numerical simulations, we investigate the maximum flare slamming pressures of a container ship for different speeds and wave conditions. To further clarify the mechanism of flare slamming phenomena in parametric rolling conditions, we also conduct real-time simulations to determine the relationship between slamming pressure and 3-DOF motions, namely roll, pitch, and heave.
基金support by the NSFC(11371012,11401359,11471200)the FRF for the Central Universities(GK201301007)the NSRP of Shaanxi Province(2014JQ1010)
文摘In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
文摘In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.
文摘We propose a class of iteration methods searching the best approximately generalized polynomial, which has parallel computational function and converges to the exact solution quadratically. We first transform it into a special system of nonlinear equations with constraint, then by using to certain iteration method, we combine the two basic processes of the Remes method into a whole such that the iterative process of the system of nonlinear equations and the computation of the solution to the system of linear equations proceed alternately. A lot of numerical examples show that this method not only has good convergence property but also always converges to the exact solution of the problem accurately and rapidly for almost all initial approximations .
文摘In this paper, we present a method for solving coupled problem. This method is mainly based on the successive approximations method. The external force acting on the structure is replaced by λ = p (x1, H + u (x1, λ)). Then we have a nonlinear equation of unknown?λ to solve by successive approximations method. By this method, we obtain easily the analytic expression of the displacement. In addition, good results are obtained with only a few iterations.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.