In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the pr...In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.展开更多
In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along ...In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.展开更多
In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is ob...In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
文摘In this paper Substrate Integrated Waveguide-basedfiltenna operating at Ku band is proposed.The model is designed on a low loss dielectric substrate having a thickness of 0.508 mm and comprises of shorting vias along two edges of the substrate walls.To realize a bandpassfilter,secondary shorting vias are placed close to primary shorting vias.The dimension and position of the vias are carefully analyzed for Ku band frequencies.The model is fabricated on Roger RT/duroid 5880 and the performance characteristics are measured.The proposed model achieves significant impedance characteristics with wider bandwidth in the Ku band.The model also achieves a maximum gain of 7.46 dBi in the operating band thus making it suitable for Ku-band applications.Substrate Integrated Waveguide(SIW)Structures possess most of the advantages over conventional radiofrequency waveguides since they have high power management capacity with self-consistent electrical shielding.The most noteworthy advantage of SIW,it can able to integrate all the components on the same substrate,both passive and active components.
基金This work was supported by the National Key research and development program of China(No.2021YFB 2900401)the national natural science foundation of China(No.62361057,No.61861046)+1 种基金the key natural science foundation of Shenzhen(No.JCYJ20220818102209020)the key research and development program of Shenzhen(No.ZDSYS20210623091807023).
文摘In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.
文摘针对增益均衡器小型化的发展趋势和要求,设计了多子结构单元级联的Ku波段的半模基片集成增益均衡器.谐振子单元与主传输线在三层介质基板上,成空间立体分布,构成七层结构;提出了利用多节微带线枝节进行阻抗匹配的过渡带设计方法,根据坐标变换分析得到HMSIW谐振腔的主模;采用羟基铁填充的吸收柱阵列调节衰减量和Q值,给出了该结构均衡器的设计步骤.与微带均衡器相比,该均衡器提高了Q值,减小了损耗.测试结果表明,该结构保持了和腔体类均衡器相同的性能,同时缩小了体积,实测结果与目标均衡曲线吻合度较好,最大差值为0.6d B.行波管与均衡器联测后,输出增益波动小于±0.4d B.