The prion protein(PrP) is the key molecular and pathological mediator of prion diseases,a heterogeneous group of brain disorders with fatal outcomes.Prion diseases are rare but deserve special attention because of the...The prion protein(PrP) is the key molecular and pathological mediator of prion diseases,a heterogeneous group of brain disorders with fatal outcomes.Prion diseases are rare but deserve special attention because of their unique familial,sporadic,and transmissible etiologies,all caused by a single agent:misfolded conformations of PrP.展开更多
Spectral compressive imaging has emerged as a powerful technique to collect the 3D spectral information as 2D measurements.The algorithm for restoring the original 3D hyperspectral images(HSIs)from compressive measure...Spectral compressive imaging has emerged as a powerful technique to collect the 3D spectral information as 2D measurements.The algorithm for restoring the original 3D hyperspectral images(HSIs)from compressive measurements is pivotal in the imaging process.Early approaches painstakingly designed networks to directly map compressive measurements to HSIs,resulting in the lack of interpretability without exploiting the imaging priors.While some recent works have introduced the deep unfolding framework for explainable reconstruction,the performance of these methods is still limited by the weak information transmission between iterative stages.In this paper,we propose a Memory-Augmented deep Unfolding Network,termed MAUN,for explainable and accurate HSI reconstruction.Specifically,MAUN implements a novel CNN scheme to facilitate a better extrapolation step of the fast iterative shrinkage-thresholding algorithm,introducing an extra momentum incorporation step for each iteration to alleviate the information loss.Moreover,to exploit the high correlation of intermediate images from neighboring iterations,we customize a cross-stage transformer(CSFormer)as the deep denoiser to simultaneously capture self-similarity from both in-stage and cross-stage features,which is the first attempt to model the long-distance dependencies between iteration stages.Extensive experiments demonstrate that the proposed MAUN is superior to other state-of-the-art methods both visually and metrically.Our code is publicly available at https://github.com/HuQ1an/MAUN.展开更多
Single-molecule magnetic tweezers(MTs) have revealed multiple transition barriers along the unfolding pathway of several two-state proteins, such as GB1 and Csp. In this study, we utilized MTs to measure the force-dep...Single-molecule magnetic tweezers(MTs) have revealed multiple transition barriers along the unfolding pathway of several two-state proteins, such as GB1 and Csp. In this study, we utilized MTs to measure the force-dependent folding and unfolding rates of both protein L(PLWT) and its Y47W mutant(PLY47W) where the mutation point is not at the force-bearing β-strands. The measurements were conducted within a force range of 3–120 pN. Notably, the unfolding rates of both PLWT and PWY47W exhibit distinct force sensitivities below 50 pN and above 60 pN, implying a two-barrier free energy landscape. Both PLWT and PLY47W share the same force-dependent folding rate and the same transition barriers,but the unfolding rate of PLY47W is faster than that of PLWT. Our finding demonstrates that the residue outside of the force-bearing region will also affect the force-induced unfolding dynamics.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented witho...A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.展开更多
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resul...A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.展开更多
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv...The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.展开更多
Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model...Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.展开更多
A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric pho...A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric phononic crystal. Each bimorph is connected independently by a resistive-inductive resonant shunting circuit. The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the finite element method(FEM). The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circuits. Appropriate circuit parameters are used to join these two Bragg band gaps by the locally resonant band gap.Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.展开更多
Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and innovative ideas in the field of biomimetic engineering. The key inputs from biology can be used for cr...Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and innovative ideas in the field of biomimetic engineering. The key inputs from biology can be used for creation of efficient and optimized structures. The study of the geometry and folding pattern of leaves of Mimosa pudica, referred as Sensitive Plant, reveals some of the peculiar characteristics during folding and unfolding. When the leaf is touched, it quickly folds its leaflets and pinnae and droops downward at the petiole attachment. With the help of experiments on simulation model, the variations in angle of leaflets and degree of compaction after folding are investigated.展开更多
Folding and spinning behavior of Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) in different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild rice genotypes...Folding and spinning behavior of Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) in different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild rice genotypes were significantly different. Longer leaf selection time and folding time per primary fold; shorter primary fold and whole leaf fold; lower number of binds per primary fold and whole leaf fold were recorded in resistant and wild rice genotypes. In the correlation analysis, it was found that the leaf folding parameters were positively correlated to leaf folder damage whereas the leaf spinning parameters were negatively correlated. Similarly, the morphological characters differed significantly among the chosen genotypes and were related to leaffolder damage. The leaf width and total productive tiller number were positively correlated to leaffolder infestation. Results also indicated that the trichome density and length, leaf length and plant height might contribute to resistance whereas total number of green leaves had no effect on leaffolder infestation. In the scatter plot analysis between leaf folding and spinning characters and leaffolder damage, the genotypes were separated into four groups viz., resistant (TKM6, Ptb 33, LFR831311, Oryza rhizomatis and O. minuta), moderately resistant (ASD16 and CORH1), moderately susceptible (ADT36, Pusa Basmati and CB200290) and susceptible (IR36 and TN1). The present investigation proved that the leaf morphology viz., leaf length and width, plant height and trichome density and length may play a vital role in resistance against rice leaffolder.展开更多
We have developed a web-server for predicting the folding rate of a protein based on its amino acid sequence information alone. The web- server is called Pred-PFR (Predicting Protein Folding Rate). Pred-PFR is feature...We have developed a web-server for predicting the folding rate of a protein based on its amino acid sequence information alone. The web- server is called Pred-PFR (Predicting Protein Folding Rate). Pred-PFR is featured by fusing multiple individual predictors, each of which is established based on one special feature derived from the protein sequence. The ensemble pre-dictor thus formed is superior to the individual ones, as demonstrated by achieving higher correlation coefficient and lower root mean square deviation between the predicted and observed results when examined by the jack-knife cross-validation on a benchmark dataset constructed recently. As a user-friendly web- server, Pred-PFR is freely accessible to the public at www.csbio.sjtu.edu.cn/bioinf/Folding Rate/.展开更多
Artificial molecular chaperone (AMC) and ion exchange chromatography (IEC) were integrated, thus a new refolding method, artificial molecular chaperone-ion exchange chromatography (AMC-IEC) was developed. Compar...Artificial molecular chaperone (AMC) and ion exchange chromatography (IEC) were integrated, thus a new refolding method, artificial molecular chaperone-ion exchange chromatography (AMC-IEC) was developed. Compared with AMC and IEC, the activity recovery of lysozyme obtained by AMC-IEC was much higher in the investigated range of initial protein concentrations, and the results show that AMC-IEC is very efficient for protein refolding at high concentrations. When the initial concentration of lysozyme is 180 mg/mL, its activity recovery obtained by AMC-IEC is still as high as 76.6%, while the activity recoveries obtained by AMC and IEC are 45.6% and 42.4%, respectively.展开更多
A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing...A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing algorithm was used to search its native conformation. When it is applied to analysis proteins 1agt and 1aho, we find that helical segment cannot fold into native conformation without the influence of long-range interactions. That's to say that long-range interactions are the main determinants in protein folding. Key words toy model - protein folding - simulated annealing algorithm - short and long range interactions CLC number O 242.28 - Q71 Foundation item: Supported by the National Natural Science Foundation of China((60301009)Biography: WANG Long-hui (1976-), female, Ph. D candidate, research direction: machine learning, bioinformatics.展开更多
The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoir...The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoirs in the world. Structures in this area have complications and the study anticline has unique structures in the Fars region. In the study area, the Kuh-e Qazi anticline due to special fold style and rotation toward Northeast is the unique structure between anticlines of the Zagros belt. This anticline is fault bend fold and plunge of the anticline in eastern part rotated toward Northeast along with the Nezamabad fault trend. In this area, the Kuh-e Qazi anticline has asymmetric structures and some faults such as the Nezamabad and the Sarvestan strike slip fault effect on this anticline. The geometry of anticlines in the Zagros fold-thrust belt is affected by the type of deformation and mechanical behavior of stratigraphic units specially detachment units. The purpose of this research is to determine of folding pattern of the Kuh-e Qazi anticline and define structural features affected on them in the study area. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply Folded Belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. Also, we use some software as Global Mapper and Tectonics FP for preparing some data.?Based on the research, which have been done, the boundary between ductile and frictional substrates causes rotation as a result of lateral, along-strike migration of the ductile substrate. The ductile or viscose layer in the study area is Hormuz Series. Due to lack or thinning of Hormuz salt over the Gavbandi basement high and in the eastern side of the Nezamabad basement fault, causes translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest unlike foreland basin due to the Nezamabad fault activity. This style between all of the anticlines in the study area is unique that rotates unlike foreland basin. In addition, influence on anticlockwise rotation, extensional stress has been created and then salt dome cropping out in Southeast of the Kuh-Qazi anticline. One of the best evidence for effect of extensional stress is triangular facets in this part of the study anticline. Based on folding analysis (geometry of axial plane and fold orientation), it is clearly confirmed that the translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest has been formed by basement fault activity as the Nezamabad fault in the boundary between ductile and frictional substrates of the study area.展开更多
The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with ...The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with Northwest-Southeast trend. The Sarvestan fault zone has caused main deformation by dextral strike slip activity in southern part of the Zagros fold-thrust belt. The main aim of this paper is to determine of fold style elements and folding pattern of the Kuh-e Siah anticline. This paper presents part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. In addition, we used some software as Global Mapper and Tectonics FP for prepared some data. Folds, which are close sideways, are neutral and these require special attention. It is remarkable that, in all sections of the Kuh-e Siah anticline, fold type is close and in the middle part of the anticline, fold type is different with other parts. In the middle part, fold type is upright-moderately gently plunging. On the other hand, in northwestern and southeastern parts fold type is similar together. These results maybe show that fold style follow that fold sigmoidal shape that created with two-fault segment of the Sarvestan fault zone in the study area. Therefore, it seems that the Kuh-e Siah anticline has suffered high deformation in the Sarvestan fault zone and this fault zone has created shear zone.展开更多
Extensional fault-bend folds, also called rollovers, are one of the most common structures in extensional settings. Numerous studies have shown that oblique simple shear is the most appropriate mechanism for quantitat...Extensional fault-bend folds, also called rollovers, are one of the most common structures in extensional settings. Numerous studies have shown that oblique simple shear is the most appropriate mechanism for quantitative modeling of geometric relations between normal faults and the strata in their hanging walls. However, the oblique simple shear has a rather serious issue derived from the shear direction, particularly above convex bends. We use geometric and experimental methods to study the deformation of extensional fault-bend folds on convex bends. The results indicate that whether the fault bends are concave or convex, the shear direction of the hanging wall dips toward the main fault. On this basis, we improve the previous geometric model by changing the shear direction above the convex bends. To illustrate basin history, our model highlights the importance of the outer limit of folding instead of the growth axial. Moreover, we propose a new expression for the expansion index that is applicable to the condition of no deposition on the footwall. This model is validated by modeling a natural structure of the East China Sea Basin.展开更多
An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampe...An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device.展开更多
基金supported by the NIH grant7R21 NS09662 7-02 to PFFthe Winston and Maxine Wallin Neuroscience Discovery Fund award CON000000083928 to PFF and AC。
文摘The prion protein(PrP) is the key molecular and pathological mediator of prion diseases,a heterogeneous group of brain disorders with fatal outcomes.Prion diseases are rare but deserve special attention because of their unique familial,sporadic,and transmissible etiologies,all caused by a single agent:misfolded conformations of PrP.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Spectral compressive imaging has emerged as a powerful technique to collect the 3D spectral information as 2D measurements.The algorithm for restoring the original 3D hyperspectral images(HSIs)from compressive measurements is pivotal in the imaging process.Early approaches painstakingly designed networks to directly map compressive measurements to HSIs,resulting in the lack of interpretability without exploiting the imaging priors.While some recent works have introduced the deep unfolding framework for explainable reconstruction,the performance of these methods is still limited by the weak information transmission between iterative stages.In this paper,we propose a Memory-Augmented deep Unfolding Network,termed MAUN,for explainable and accurate HSI reconstruction.Specifically,MAUN implements a novel CNN scheme to facilitate a better extrapolation step of the fast iterative shrinkage-thresholding algorithm,introducing an extra momentum incorporation step for each iteration to alleviate the information loss.Moreover,to exploit the high correlation of intermediate images from neighboring iterations,we customize a cross-stage transformer(CSFormer)as the deep denoiser to simultaneously capture self-similarity from both in-stage and cross-stage features,which is the first attempt to model the long-distance dependencies between iteration stages.Extensive experiments demonstrate that the proposed MAUN is superior to other state-of-the-art methods both visually and metrically.Our code is publicly available at https://github.com/HuQ1an/MAUN.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174322 to HC and 12204124 to ZG)111 Project(Grant No.B16029)+1 种基金the Graduate Scientific Research Foundation of Wenzhou University(Grant No.3162023003034 to JH)research grant from Wenzhou Institute。
文摘Single-molecule magnetic tweezers(MTs) have revealed multiple transition barriers along the unfolding pathway of several two-state proteins, such as GB1 and Csp. In this study, we utilized MTs to measure the force-dependent folding and unfolding rates of both protein L(PLWT) and its Y47W mutant(PLY47W) where the mutation point is not at the force-bearing β-strands. The measurements were conducted within a force range of 3–120 pN. Notably, the unfolding rates of both PLWT and PWY47W exhibit distinct force sensitivities below 50 pN and above 60 pN, implying a two-barrier free energy landscape. Both PLWT and PLY47W share the same force-dependent folding rate and the same transition barriers,but the unfolding rate of PLY47W is faster than that of PLWT. Our finding demonstrates that the residue outside of the force-bearing region will also affect the force-induced unfolding dynamics.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
文摘A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金funded by the Science and Technology Research and Development Program of China Petroleum and Chemical Corporation(No.P06088)Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003).
文摘A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.
基金supported by National Natural Science Foundation ofChina(Grant No.50935002)
文摘The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.
基金supported by the start-up grant from“Top 100 Talents Program”of Sun Yat-sen University to JRY(50000-31131114)General Program of National Natural Science Foundation of China to JRY(31671320)
文摘Currently many facets of genetic information are illdefined. In particular, how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology. And a generic mechanistic model with supports of genomic data is still lacking. Recent technological advances have enabled much needed genome-wide experiments. While putting the effect of codon optimality on debate, these studies have supplied mounting evidence suggesting a role of m RNA structure in the regulation of protein folding by modulating translational elongation rate. In conjunctions with previous theories, this mechanistic model of protein folding guided by m RNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles.
基金Project supported by the National Natural Science Foundation of China(Nos.11272126,51435006,and 51121002)the Fundamental Research Funds for the Central Universities(Nos.HUST:2016JCTD114 and HUST:2015TS121)
文摘A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric phononic crystal. Each bimorph is connected independently by a resistive-inductive resonant shunting circuit. The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the finite element method(FEM). The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circuits. Appropriate circuit parameters are used to join these two Bragg band gaps by the locally resonant band gap.Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.
文摘Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and innovative ideas in the field of biomimetic engineering. The key inputs from biology can be used for creation of efficient and optimized structures. The study of the geometry and folding pattern of leaves of Mimosa pudica, referred as Sensitive Plant, reveals some of the peculiar characteristics during folding and unfolding. When the leaf is touched, it quickly folds its leaflets and pinnae and droops downward at the petiole attachment. With the help of experiments on simulation model, the variations in angle of leaflets and degree of compaction after folding are investigated.
基金the University Grant Commission, New Delhi, India for providing financial assistance as student fellowship to carry out these studies
文摘Folding and spinning behavior of Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) in different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild rice genotypes were significantly different. Longer leaf selection time and folding time per primary fold; shorter primary fold and whole leaf fold; lower number of binds per primary fold and whole leaf fold were recorded in resistant and wild rice genotypes. In the correlation analysis, it was found that the leaf folding parameters were positively correlated to leaf folder damage whereas the leaf spinning parameters were negatively correlated. Similarly, the morphological characters differed significantly among the chosen genotypes and were related to leaffolder damage. The leaf width and total productive tiller number were positively correlated to leaffolder infestation. Results also indicated that the trichome density and length, leaf length and plant height might contribute to resistance whereas total number of green leaves had no effect on leaffolder infestation. In the scatter plot analysis between leaf folding and spinning characters and leaffolder damage, the genotypes were separated into four groups viz., resistant (TKM6, Ptb 33, LFR831311, Oryza rhizomatis and O. minuta), moderately resistant (ASD16 and CORH1), moderately susceptible (ADT36, Pusa Basmati and CB200290) and susceptible (IR36 and TN1). The present investigation proved that the leaf morphology viz., leaf length and width, plant height and trichome density and length may play a vital role in resistance against rice leaffolder.
文摘We have developed a web-server for predicting the folding rate of a protein based on its amino acid sequence information alone. The web- server is called Pred-PFR (Predicting Protein Folding Rate). Pred-PFR is featured by fusing multiple individual predictors, each of which is established based on one special feature derived from the protein sequence. The ensemble pre-dictor thus formed is superior to the individual ones, as demonstrated by achieving higher correlation coefficient and lower root mean square deviation between the predicted and observed results when examined by the jack-knife cross-validation on a benchmark dataset constructed recently. As a user-friendly web- server, Pred-PFR is freely accessible to the public at www.csbio.sjtu.edu.cn/bioinf/Folding Rate/.
基金the National Natural Science Foundation in China(No.20705028)the Foundation of Key Laboratory of Modem Separation Science in Shaanxi Province(No.05JS61).
文摘Artificial molecular chaperone (AMC) and ion exchange chromatography (IEC) were integrated, thus a new refolding method, artificial molecular chaperone-ion exchange chromatography (AMC-IEC) was developed. Compared with AMC and IEC, the activity recovery of lysozyme obtained by AMC-IEC was much higher in the investigated range of initial protein concentrations, and the results show that AMC-IEC is very efficient for protein refolding at high concentrations. When the initial concentration of lysozyme is 180 mg/mL, its activity recovery obtained by AMC-IEC is still as high as 76.6%, while the activity recoveries obtained by AMC and IEC are 45.6% and 42.4%, respectively.
文摘A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing algorithm was used to search its native conformation. When it is applied to analysis proteins 1agt and 1aho, we find that helical segment cannot fold into native conformation without the influence of long-range interactions. That's to say that long-range interactions are the main determinants in protein folding. Key words toy model - protein folding - simulated annealing algorithm - short and long range interactions CLC number O 242.28 - Q71 Foundation item: Supported by the National Natural Science Foundation of China((60301009)Biography: WANG Long-hui (1976-), female, Ph. D candidate, research direction: machine learning, bioinformatics.
文摘The study area is located in the Zagros Simply Folded Belt of Iran and in the interior Fars sub-basin (175 km from Persian Gulf). The Zagros fold-thrust belt is home to one of the largest petroleum producing reservoirs in the world. Structures in this area have complications and the study anticline has unique structures in the Fars region. In the study area, the Kuh-e Qazi anticline due to special fold style and rotation toward Northeast is the unique structure between anticlines of the Zagros belt. This anticline is fault bend fold and plunge of the anticline in eastern part rotated toward Northeast along with the Nezamabad fault trend. In this area, the Kuh-e Qazi anticline has asymmetric structures and some faults such as the Nezamabad and the Sarvestan strike slip fault effect on this anticline. The geometry of anticlines in the Zagros fold-thrust belt is affected by the type of deformation and mechanical behavior of stratigraphic units specially detachment units. The purpose of this research is to determine of folding pattern of the Kuh-e Qazi anticline and define structural features affected on them in the study area. This paper presents a part of the results of a regional study of the Fars province in the Zagros Simply Folded Belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. Also, we use some software as Global Mapper and Tectonics FP for preparing some data.?Based on the research, which have been done, the boundary between ductile and frictional substrates causes rotation as a result of lateral, along-strike migration of the ductile substrate. The ductile or viscose layer in the study area is Hormuz Series. Due to lack or thinning of Hormuz salt over the Gavbandi basement high and in the eastern side of the Nezamabad basement fault, causes translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest unlike foreland basin due to the Nezamabad fault activity. This style between all of the anticlines in the study area is unique that rotates unlike foreland basin. In addition, influence on anticlockwise rotation, extensional stress has been created and then salt dome cropping out in Southeast of the Kuh-Qazi anticline. One of the best evidence for effect of extensional stress is triangular facets in this part of the study anticline. Based on folding analysis (geometry of axial plane and fold orientation), it is clearly confirmed that the translation of strain and anticlockwise rotation in Southeast of the Kuh-e Qazi anticline toward Northwest has been formed by basement fault activity as the Nezamabad fault in the boundary between ductile and frictional substrates of the study area.
文摘The Kuh-e Siah anticline is located in the Sarvestan area of the Fars province (186 km to Persian Gulf) and Interior Fars sub basin. This anticline is a fault bend fold and is located in the Sarvestan fault zone with Northwest-Southeast trend. The Sarvestan fault zone has caused main deformation by dextral strike slip activity in southern part of the Zagros fold-thrust belt. The main aim of this paper is to determine of fold style elements and folding pattern of the Kuh-e Siah anticline. This paper presents part of the results of a regional study of the Fars province in the Zagros Simply folded belt, based on original fieldwork, satellite images, structural sections, geological maps and well data. In addition, we used some software as Global Mapper and Tectonics FP for prepared some data. Folds, which are close sideways, are neutral and these require special attention. It is remarkable that, in all sections of the Kuh-e Siah anticline, fold type is close and in the middle part of the anticline, fold type is different with other parts. In the middle part, fold type is upright-moderately gently plunging. On the other hand, in northwestern and southeastern parts fold type is similar together. These results maybe show that fold style follow that fold sigmoidal shape that created with two-fault segment of the Sarvestan fault zone in the study area. Therefore, it seems that the Kuh-e Siah anticline has suffered high deformation in the Sarvestan fault zone and this fault zone has created shear zone.
文摘Extensional fault-bend folds, also called rollovers, are one of the most common structures in extensional settings. Numerous studies have shown that oblique simple shear is the most appropriate mechanism for quantitative modeling of geometric relations between normal faults and the strata in their hanging walls. However, the oblique simple shear has a rather serious issue derived from the shear direction, particularly above convex bends. We use geometric and experimental methods to study the deformation of extensional fault-bend folds on convex bends. The results indicate that whether the fault bends are concave or convex, the shear direction of the hanging wall dips toward the main fault. On this basis, we improve the previous geometric model by changing the shear direction above the convex bends. To illustrate basin history, our model highlights the importance of the outer limit of folding instead of the growth axial. Moreover, we propose a new expression for the expansion index that is applicable to the condition of no deposition on the footwall. This model is validated by modeling a natural structure of the East China Sea Basin.
文摘An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device.