Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
A new stationary-frame AC current control strategy that can eliminate steady-state errors is discussed and applied to the control of transverse flux permanent-magnet machine (TFPM). Based on the principle of modulat...A new stationary-frame AC current control strategy that can eliminate steady-state errors is discussed and applied to the control of transverse flux permanent-magnet machine (TFPM). Based on the principle of modulation and demodulation, this AC controller can achieve the same frequency response characteristic as the equivalent DC controller. Validity of the TFPM control system using this current control strategy is confirmed with simulation results.展开更多
针对目前路径跟踪控制检测方法精度低、实时性能差的问题,提出一种基于深度机器学习的构建树形神经网络CTNN(Constructing Tree shaped Neural Net)的深度学习算法。该算法通过深度机器学习,构建针对性强的学习集,同时在模型车中实现。...针对目前路径跟踪控制检测方法精度低、实时性能差的问题,提出一种基于深度机器学习的构建树形神经网络CTNN(Constructing Tree shaped Neural Net)的深度学习算法。该算法通过深度机器学习,构建针对性强的学习集,同时在模型车中实现。将传统机器学习算法与文章所提出的算法在相同行驶条件下的实时响应进行比较,仿真结果表明,CTNN算法在恶劣的行驶环境中,实时性、鲁棒性均得到一定程度的提高。展开更多
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
文摘A new stationary-frame AC current control strategy that can eliminate steady-state errors is discussed and applied to the control of transverse flux permanent-magnet machine (TFPM). Based on the principle of modulation and demodulation, this AC controller can achieve the same frequency response characteristic as the equivalent DC controller. Validity of the TFPM control system using this current control strategy is confirmed with simulation results.
文摘针对目前路径跟踪控制检测方法精度低、实时性能差的问题,提出一种基于深度机器学习的构建树形神经网络CTNN(Constructing Tree shaped Neural Net)的深度学习算法。该算法通过深度机器学习,构建针对性强的学习集,同时在模型车中实现。将传统机器学习算法与文章所提出的算法在相同行驶条件下的实时响应进行比较,仿真结果表明,CTNN算法在恶劣的行驶环境中,实时性、鲁棒性均得到一定程度的提高。