Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly tr...Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.展开更多
Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the pla...Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.展开更多
The objective of this study was to analyze the nutrient composition and variability of university dining hall food waste and compare it with common feedstuffs used in ruminant and monogastric diets. Food waste was cat...The objective of this study was to analyze the nutrient composition and variability of university dining hall food waste and compare it with common feedstuffs used in ruminant and monogastric diets. Food waste was categorized into two initial streams: mainstream (MS) from the serving line and vegetable preparation (VP) from the kitchen. Waste was collected from the Kramer Dining Center, Kansas State University, resulting in 30 daily samples. Waste was weighed and ground to homogenous particle size. Daily samples of MS and VP were analyzed for nutrient composition, where results were combined to calculate the nutrient profile of a hypothetical mixed food waste stream (MX) composited by total weight. Data were analyzed using R statistical software (v 4.2.2). Moisture and neutral detergent fiber (NDF) were greater in VP (P , while ether extract (EE) was less compared to MS and MX. Crude protein (CP) was greater (P < 0.05) in MS and MX streams compared to VP. The total digestible nutrients (TDN) and energy were greater in MS food waste than in MX, which was also greater than VP (P content, measured by standard deviation, was similar (P > 0.05) among streams for NDF, nitrogen-corrected neutral detergent fiber, acid detergent insoluble crude protein, CP, ash, lignin, and digestible and metabolizable energy. Dry matter and EE variation were greater (P < 0.05) in MS, whereas VP was less (P < 0.05) compared to MX. Standard deviation increased (P < 0.05) in MS and MX for neutral detergent insoluble crude protein, TDN, and gross energy when compared to VP. Despite having 70% - 80% moisture, dining hall food waste does have nutritive value and the potential to be included in ruminant and monogastric diets. Further research needs to be done to understand the value of including it in animal diets.展开更多
Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. ...Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. In addition to quantitative losses, irrational use of food contributes to the depletion of natural resources (water and energy) and poses a threat to the environment, constituting a barrier to sustainable development of the food sector. The aim of this study was to establish the causes and effects of food waste throughout the food supply chain and to propose mitigation measures. Identified causes of food waste can be divided into two groups. The first are those that lead to the fact that food cannot be consumed (e.g., inadequate conditions of agricultural production and interruption of the cold chain). In the second, those that cause food cannot be sold (e.g., wrong label and wrong product weight). Most of the identified causes of food waste can be avoided (e.g., by improving the conditions of production, storage, and transportation). However, it is not possible to eliminate all potential errors leading to food waste. It is therefore necessary to consider what action to take to use food as intended. One way to reduce losses and food waste can be re-distributing to charity.展开更多
Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different m...Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.展开更多
Bench-scale treatments with three mixtures of Mg and P salts, including K3PO4+MgSO4, K2HPO4+MgSO4, and KH2PO4+MgSO4 as additives in a simulated food waste aerobic composting process, were conducted to test the magn...Bench-scale treatments with three mixtures of Mg and P salts, including K3PO4+MgSO4, K2HPO4+MgSO4, and KH2PO4+MgSO4 as additives in a simulated food waste aerobic composting process, were conducted to test the magnesium ammonium phosphate(MAP) formation, and the compost products were analyzed by X-ray diffraction(XRD), Scanning electron microscopy(SEM), and Energy dispersive X-ray spectroscopy(EDS) analyses. The comparison results between XRD, SEM, and EDS analyses of MAPs in the dried compost and synthesized MAPs confirm the formation of MAP crystals in the simulated food waste aerobic composting process. The analysis of the compost also indicates that the addition of all the three mixtures of Mg and P salts in the aerobic composting process can increase nitrogen conservation and decrease nitrogen loss because of the formation of MAPs. The mechanism of MAP formation was verified as the reaction of ammonium(NH4+) with magnesium(Mg^2+) and phosphate[HnPO4^(3-n) , n=0, 1, and 2).展开更多
The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersi...The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersicum</i> L.), watercress (<i>Nasturtium</i> <i>officinale</i>), chili pepper (<i>Capsicum</i> <i>annuum</i>), peas (<i>Pisum</i> <i>sativum</i> L.), chickpea (<i>Cicer</i> <i>arietinum</i>) and beans (<i>Vicia</i> <i>faba</i>) under greenhouse conditions. The FWC and NFCE were physico-chemically and microbiologically characterized. The NFCE effect was evaluated on tomato, watercress, and chili pepper seeds germination and seedling growth. However, for leguminous, pea, chickpea and bean seedlings, the FWC amended soils and irrigated with NFCE were tested for plants growth. The results of FWC analyses revealed that FWC has neutral pH, low EC and C/N ratio, with fertilizing elements (N, P, K and Mg) and lack of phytotoxic effect. The NFCE was characterized by low EC and relatively high carbon content (COD = 9700 mg/l), and intense microbial activity, notably mesophilic bacteria. Therefore, in fermented compost extract, mesophilic bacteria were increased by 225, yeasts by 25 and molds by 10 times compared to those of the investigated compost. In greenhouse, the diluted NFCE increased significantly (<i>p</i>< 0.05) germination and growth of the tested seedlings. Used alone, the FWC amended soil or the NFCE irrigated soil, improved the growth of tested seedlings. The use of soil amended with compost and irrigated by fermented compost extract decreased significantly the growth of the same experimented seedlings. Therefore, the FWC and its fermented extract were a suitable substrate for germination and growth of the studied seeds.展开更多
This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal c...This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment,and response surface method( RSM) is applied to optimize the conditions of the combination of ultrasonic and acid( UA) pretreatment. Results show that the optimal acid,ultrasonic and UA pretreatments conditions are individual pH 2,individual ultrasonic energy density of 1. 0 W / mL and the combination of ultrasonic energy density1. 11 W / mL and pH 1. 43,respectively. Correspondingly,the maximum disintegration degrees( DD) of 46. 90%,57. 38% and68. 83%are obtained by acid,ultrasonic and UA pretreatments,respectively. After optimizing pretreatment conditions,batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production( 976. 17 mg COD / gV S) and VFA / SCOD( 72. 89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non-pretreatment and acid pretreatment,respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.展开更多
This study was designed to evaluate the sensory quality indices, freshness assessment and safety of eating Nile tilapia fed recycled food waste materials [food industry waste (FIW) and soy sauce waste (SSW)] for 3...This study was designed to evaluate the sensory quality indices, freshness assessment and safety of eating Nile tilapia fed recycled food waste materials [food industry waste (FIW) and soy sauce waste (SSW)] for 32 weeks using K values, IMP content and microbial viable cell count. Five experimental diets were formulated at 0% and 20%-22% inclusion level of recycled food wastes. The diets were designated as D 1: 0% of recycled food waste, D2: 20% inclusion of FIW, D3: 20% inclusion of FIW and SSW, D4: 20% inclusion of FIW and tryptophan, and D5: 22% inclusion of SSW. The result from the body composition shows that D I had higher carcass protein, while D3 had the highest lipid content and there was no significant difference in the carcass moisture and ash contents among all treatments. The results of microbial viable cell counts showed that no significant differences were observed among the dietary treatments and all the fish fed experimental diets still remained fresh four days after refrigerated storage at 5 ~C. In addition, no significant differences were noted among the K value concentrations of all the fish fed the experimental diets. From the result of this study, we concluded that using 20% inclusion of recycled food waste materials (FIW and SSW) in the diet of tilapia had no negative effect on the flesh of the fish; hence, recycled food waste could be a good alternative ingredient to aquaculture.展开更多
In 2010, Brazil endorsed a new national policy of solid wastes, which has a very ambitious target to close up all the dumping areas and to manage adequately all the municipal solid waste, disposing in landfills only t...In 2010, Brazil endorsed a new national policy of solid wastes, which has a very ambitious target to close up all the dumping areas and to manage adequately all the municipal solid waste, disposing in landfills only the refuse of treated municipal solid waste after 2019. Food waste is the largest representative of organic waste produced in Brazilian municipalities, which can produce both fertilizer and biogas through anaerobic digestion (AD) process, reducing in both cases greenhouse gases emissions. AD assays of some samples of restaurant food wastes were performed in batch laboratory, 500 mL reactors for determination of optimized start-up conditions. The tests were conducted in triplicate, using anaerobic sludge from a poultry slaughterhouse wastewater treatment as inoculum to start up the anaerobic biodigestors. The effect of three different substrates to inoculum mixing ratios 10:90 (S1), 20:80 (S2) and 30:70 (S3) was evaluated. The food waste used as substrate was previously homogenized and submitted to aerobic mechanical mixing for four days before it was fed in the reactors in anaerobic conditions at the mentioned proportions with the inoculum. The reactors were maintained at 35 ℃ and under mechanical mixing at 60 rpm. The methane production was monitored until its stabilization. Results showed that S1 presented the best performance during the initial 12 d, when it totalized 526 NmLCH4/gVSsubstrate.展开更多
Food waste has developed as an alternative for the production of renewable fuels such as biogas from AD (anaerobic digestion). In relation to the biogas production rate, digester temperature setting is one of the ve...Food waste has developed as an alternative for the production of renewable fuels such as biogas from AD (anaerobic digestion). In relation to the biogas production rate, digester temperature setting is one of the very important factors for digester operation, especially in low temperature countries. In this study, the effect of digester temperature on biogas and methane production efficiency in the AD of food waste was evaluated. The two-stage anaerobic digestion has a total reactor volume of 60 L (acid reactor volume was 30 L and methane reactor volume was 30 L). They were incubated at mesophilic and thermophilic conditions for 25 days to determine temperature profiles for the AD process. The results of the laboratory-scale experiment show that maximum biogas production occurred at 55 ℃ (38.14 L of biogas) for a period of 11 days when compared to other temperatures. Second best was at 50 ℃ (37.44 L of biogas) for a period of 12 days, followed by 40 ℃ (35.36 L of biogas) for a period of 15 days. Thermophilic temperatures will be used in further studies to examine scaling up of the process.展开更多
Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation f...Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation focuses on qualitative methods,eleven interviews and observations were made from September to December 2018.Results show that in luxury hotels the main challenge is to ensure the correct balance between 5*experience and minimizing food waste.It was found that kitchen,breakfast open-buffet and staff canteen are among the leading causes of food waste,generating even higher food waste compared to conferences,banquets,orála carte options.While a broad range of practices exist that are believed to minimize the food waste of buffets,most of the luxury hotels are only implementing a small ratio of such practices and are only in the beginning of the planning phase to expand their practices in this regard.展开更多
AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy ...AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy resoures. Biogas production by co-digestion of mixed Napier Pak Chong I and food waste at thermophilic temperature using anaerobic digestion in cow dung and chicken dung as the seed inoculums were investigated. The total reactor volume of the co-digester reactor was 7.94 m^3, which was equipped with pump, and it was operated continuously for the 20 days as a pilot scale at 50 ℃. The Napier Pak Chong I was cut into 2 mm sections, and the initial VS (volatile solids) was 30%. The initial VS of food waste were 70%. Two pilot-scale digesters filled with Napier Pak Chong I and food waste, which both digesters contained 476 kg of Napier Pak Chong I mixed 305 L of food waste, and 1305 L of water. There were carried out to investigate the optimum C/N (carbon to nitrogen) ratio for effective biogas production. The slurry raw materials provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.0). Digester I was designed for 1.98 m^3 of cow dung as the seed inoculum while digester II was designed to establish 1.98 m^3 of chicken dung as the seed inoculum. Gas detector performs analysis gas production. The m^3/day in digester I and 1.86 m^3/day from digester II, resulting in added, respectively. Biogas production in digester I was directly experimental results indicate that total biogas production was 2.19 specific methane yields of 1.26 m^3 CH4/kgVS and 1.07 m^3 CH4/kgVS correlated with temperature.展开更多
A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic d...A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of b-hydroxybutyrate (HB) and b-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer.展开更多
More researches are needed to identify the relevant factors influencing the generation of food waste and devise preventive strategies. The objective of this study is to develop a checklist to assess the good managemen...More researches are needed to identify the relevant factors influencing the generation of food waste and devise preventive strategies. The objective of this study is to develop a checklist to assess the good management practices that have a positive impact on eliminating or minimizing food waste in food service units. A theoretical list of relevant factors impacting the generation of food waste during meal production is developed, taking into account administrative planning, receipt and storage of foods, and the preparation and distribution of meals by food service units. For each factor, several administrative and/or technical actions are identified. To validate the content, this list is submitted to a ten-member expert panel for a final evaluation. The factor (and its respective actions) is considered relevant if 80% of the expert panel members agree on its relevance. All actions employ a dichotomous response of Yes/No. Affirmative responses are expected because these actions are considered to be good management practices that have a positive impact on eliminating or minimizing food waste. Following the panel approval process, a checklist of 12 factors and 102 actions is detailed. The conceptual structure of the checklist for food waste management presented in this study enables a comprehensive understanding of the factors that impact food waste, providing a theoretical basis for future research into the relative importance of the relevant factors and actions identified in this study.展开更多
This study suggested environmental and economic evaluations by developing a scenario according to the various treatment options of food waste in Korea. In particular, the study evaluated the possibility about the comb...This study suggested environmental and economic evaluations by developing a scenario according to the various treatment options of food waste in Korea. In particular, the study evaluated the possibility about the combined treatment of food waste and human excrement after using food waste disposers (FWDs). The scenario including only composting (133 kg CO2 equiv./ton-household organic waste) or only FWDs (125 kg CO2 equiv./ton-household organic waste) was superior to the other scenarios in the environmental aspect and the scenario including only composting (101 USD/ton-household organic waste) was superior to the other scenarios in the economic aspect. However, the study discovered that 52% of greenhouse gas emission was reduced when sewage pretreatment was conducted in houses after using FWDs and also when biogas was collected on site and utilized in the private power station. Furthermore, the energy saving effect due to recovery of biogas has found to be larger in the environment aspect than in the economic aspect.展开更多
Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the...Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.展开更多
Purpose: To analyze the odor components in food waste treatment process. Method: Cold trap enrichment-GC/MS technology was used to determine the component. Result: The detection results showed that the levels of odora...Purpose: To analyze the odor components in food waste treatment process. Method: Cold trap enrichment-GC/MS technology was used to determine the component. Result: The detection results showed that the levels of odorant concentrations from the main processing units were ranked in the order of: temperature sterilization device > oil-water separator > anaerobic fermenter > separation equipment > unloading area. Oxygenated organic compounds were the main components. Conclusion: Ethanol, hydrogen sulfide, dimethyl disulfide, ammonia, limonene were characteristic pollutants in the unloading areas and separation equipment;ethanol, methyl mercaptan, hydrogen sulfide, dimethyl disulfide, limonene were characteristic pollutants in the temperature sterilization device and oil-water separator;ethanol, hydrogen sulfide, dimethyl disulfide, p-diethylbenzene, limonene were characteristic pollutants in the anaerobic fermenter.展开更多
The determination of biochemical methane potential (BMP) is very important for the valorization of food wastes. This study is focused on the evaluation of the theoretical methane production from chemical oxygen demand...The determination of biochemical methane potential (BMP) is very important for the valorization of food wastes. This study is focused on the evaluation of the theoretical methane production from chemical oxygen demand (COD) of some food wastes, coming out Akouedo landfill. Almost all of the considered samples exhibited methane theoretical yields equal to about 402.5 - 507.8 mLCH4/gVS. These results indicate the suitability of all the studied food wastes from Akouedo landfill to be converted into energy.展开更多
To save the cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation (CCSSF) system composed of a rotating drum reactor, a humidifier and a condenser has been developed. In t...To save the cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation (CCSSF) system composed of a rotating drum reactor, a humidifier and a condenser has been developed. In this research, the feasibility of using this system for production of ethanol from food wastes was carried out. The ethanol conversion of bread crust and rice grain (uncooked rice) as substrates reached up to 100.9% ± 5.1% and 108.0% ± 7.9% (against theoretical yield), respectively. Even for bread crust, a processed starchy material which contained lower carbohydrate content than rice grain, the amount of ethanol obtained in a unit of CCSSF per year was higher due to easy saccharification and fermentation. The salt contained in potato chips directly affected yeast activity resulting to low ethanol conversion (80.7% ± 4.7% against theoretical yield).展开更多
文摘Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.
基金supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korean Government(MSIT)(No.2022R1A2C1008993).
文摘Food waste is recognized as a valuable source for potential agricultural applications to supply organic matter and nutrients to arable soil.However,the information on the combined application of food waste and the plant growth-promoting bacterial strain,Chlorella,related to plant metabolic features and sodium chloride content in arable soil is limited.The present study was conducted to investigate the exogenous application of food waste along with Chlorella,which improved the physio-morphological features of red pepper.Our results revealed that this combination enhanced the organic matter in the soil,ultimately improving the fertility rate of the soil,and the physio-morphological features,such as chlorophyll a content(24.5±0.7),root(7.8±0.7)cm and shoot length(12.1±0.7)cm,fresh weight(2.1±0.05)g,dry weight(0.19±0.05)g,mineral contents,and hormonal concentration(ABA by up to 2 folds).The combined treatment also minimized free radicals via the activation of the intrinsic antioxidant series cascade and electrolyte leakage.Our findings showed that adding Chlorella and food wastes improved growth characteristics and can be used as a green bio-fertilizer for sustainable agriculture.
文摘The objective of this study was to analyze the nutrient composition and variability of university dining hall food waste and compare it with common feedstuffs used in ruminant and monogastric diets. Food waste was categorized into two initial streams: mainstream (MS) from the serving line and vegetable preparation (VP) from the kitchen. Waste was collected from the Kramer Dining Center, Kansas State University, resulting in 30 daily samples. Waste was weighed and ground to homogenous particle size. Daily samples of MS and VP were analyzed for nutrient composition, where results were combined to calculate the nutrient profile of a hypothetical mixed food waste stream (MX) composited by total weight. Data were analyzed using R statistical software (v 4.2.2). Moisture and neutral detergent fiber (NDF) were greater in VP (P , while ether extract (EE) was less compared to MS and MX. Crude protein (CP) was greater (P < 0.05) in MS and MX streams compared to VP. The total digestible nutrients (TDN) and energy were greater in MS food waste than in MX, which was also greater than VP (P content, measured by standard deviation, was similar (P > 0.05) among streams for NDF, nitrogen-corrected neutral detergent fiber, acid detergent insoluble crude protein, CP, ash, lignin, and digestible and metabolizable energy. Dry matter and EE variation were greater (P < 0.05) in MS, whereas VP was less (P < 0.05) compared to MX. Standard deviation increased (P < 0.05) in MS and MX for neutral detergent insoluble crude protein, TDN, and gross energy when compared to VP. Despite having 70% - 80% moisture, dining hall food waste does have nutritive value and the potential to be included in ruminant and monogastric diets. Further research needs to be done to understand the value of including it in animal diets.
文摘Globally, about one third of all food produced is wasted every year. Losses take place along the entire food chain and they need to be analyzed and monitored due to their impact on the development of the food sector. In addition to quantitative losses, irrational use of food contributes to the depletion of natural resources (water and energy) and poses a threat to the environment, constituting a barrier to sustainable development of the food sector. The aim of this study was to establish the causes and effects of food waste throughout the food supply chain and to propose mitigation measures. Identified causes of food waste can be divided into two groups. The first are those that lead to the fact that food cannot be consumed (e.g., inadequate conditions of agricultural production and interruption of the cold chain). In the second, those that cause food cannot be sold (e.g., wrong label and wrong product weight). Most of the identified causes of food waste can be avoided (e.g., by improving the conditions of production, storage, and transportation). However, it is not possible to eliminate all potential errors leading to food waste. It is therefore necessary to consider what action to take to use food as intended. One way to reduce losses and food waste can be re-distributing to charity.
基金Supported by the Natural Science Foundation of Heilongjiang Province(QC2014C031)Returned Overseas Foundation of Heilongjiang Province(LC2013C07)+2 种基金Outstanding Academic Leaders Foundation of Harbin City(2013RFXYJ015)Young Reserve Talent Foundation of Harbin City(2014RFQYJ141)Outstanding Young Foundation of Heilongjiang Academy of Agricultural Sciences(2013JCQN003)
文摘Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.
基金Supported by the Scholarship from China Scholarship Council(No.22822053)
文摘Bench-scale treatments with three mixtures of Mg and P salts, including K3PO4+MgSO4, K2HPO4+MgSO4, and KH2PO4+MgSO4 as additives in a simulated food waste aerobic composting process, were conducted to test the magnesium ammonium phosphate(MAP) formation, and the compost products were analyzed by X-ray diffraction(XRD), Scanning electron microscopy(SEM), and Energy dispersive X-ray spectroscopy(EDS) analyses. The comparison results between XRD, SEM, and EDS analyses of MAPs in the dried compost and synthesized MAPs confirm the formation of MAP crystals in the simulated food waste aerobic composting process. The analysis of the compost also indicates that the addition of all the three mixtures of Mg and P salts in the aerobic composting process can increase nitrogen conservation and decrease nitrogen loss because of the formation of MAPs. The mechanism of MAP formation was verified as the reaction of ammonium(NH4+) with magnesium(Mg^2+) and phosphate[HnPO4^(3-n) , n=0, 1, and 2).
文摘The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersicum</i> L.), watercress (<i>Nasturtium</i> <i>officinale</i>), chili pepper (<i>Capsicum</i> <i>annuum</i>), peas (<i>Pisum</i> <i>sativum</i> L.), chickpea (<i>Cicer</i> <i>arietinum</i>) and beans (<i>Vicia</i> <i>faba</i>) under greenhouse conditions. The FWC and NFCE were physico-chemically and microbiologically characterized. The NFCE effect was evaluated on tomato, watercress, and chili pepper seeds germination and seedling growth. However, for leguminous, pea, chickpea and bean seedlings, the FWC amended soils and irrigated with NFCE were tested for plants growth. The results of FWC analyses revealed that FWC has neutral pH, low EC and C/N ratio, with fertilizing elements (N, P, K and Mg) and lack of phytotoxic effect. The NFCE was characterized by low EC and relatively high carbon content (COD = 9700 mg/l), and intense microbial activity, notably mesophilic bacteria. Therefore, in fermented compost extract, mesophilic bacteria were increased by 225, yeasts by 25 and molds by 10 times compared to those of the investigated compost. In greenhouse, the diluted NFCE increased significantly (<i>p</i>< 0.05) germination and growth of the tested seedlings. Used alone, the FWC amended soil or the NFCE irrigated soil, improved the growth of tested seedlings. The use of soil amended with compost and irrigated by fermented compost extract decreased significantly the growth of the same experimented seedlings. Therefore, the FWC and its fermented extract were a suitable substrate for germination and growth of the studied seeds.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51008105 and 51121062)the State Key Laboratory of Urban Water Resource and Environment(Grant No.2014TS06)+1 种基金the Department of Education Fund for Doctoral Tutor(Grant No.20122302110054)the Special S&T Project on Treatment and Control of Water Pollution(Grant No.2013ZX07201007-001)
文摘This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment,and response surface method( RSM) is applied to optimize the conditions of the combination of ultrasonic and acid( UA) pretreatment. Results show that the optimal acid,ultrasonic and UA pretreatments conditions are individual pH 2,individual ultrasonic energy density of 1. 0 W / mL and the combination of ultrasonic energy density1. 11 W / mL and pH 1. 43,respectively. Correspondingly,the maximum disintegration degrees( DD) of 46. 90%,57. 38% and68. 83%are obtained by acid,ultrasonic and UA pretreatments,respectively. After optimizing pretreatment conditions,batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production( 976. 17 mg COD / gV S) and VFA / SCOD( 72. 89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non-pretreatment and acid pretreatment,respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.
文摘This study was designed to evaluate the sensory quality indices, freshness assessment and safety of eating Nile tilapia fed recycled food waste materials [food industry waste (FIW) and soy sauce waste (SSW)] for 32 weeks using K values, IMP content and microbial viable cell count. Five experimental diets were formulated at 0% and 20%-22% inclusion level of recycled food wastes. The diets were designated as D 1: 0% of recycled food waste, D2: 20% inclusion of FIW, D3: 20% inclusion of FIW and SSW, D4: 20% inclusion of FIW and tryptophan, and D5: 22% inclusion of SSW. The result from the body composition shows that D I had higher carcass protein, while D3 had the highest lipid content and there was no significant difference in the carcass moisture and ash contents among all treatments. The results of microbial viable cell counts showed that no significant differences were observed among the dietary treatments and all the fish fed experimental diets still remained fresh four days after refrigerated storage at 5 ~C. In addition, no significant differences were noted among the K value concentrations of all the fish fed the experimental diets. From the result of this study, we concluded that using 20% inclusion of recycled food waste materials (FIW and SSW) in the diet of tilapia had no negative effect on the flesh of the fish; hence, recycled food waste could be a good alternative ingredient to aquaculture.
文摘In 2010, Brazil endorsed a new national policy of solid wastes, which has a very ambitious target to close up all the dumping areas and to manage adequately all the municipal solid waste, disposing in landfills only the refuse of treated municipal solid waste after 2019. Food waste is the largest representative of organic waste produced in Brazilian municipalities, which can produce both fertilizer and biogas through anaerobic digestion (AD) process, reducing in both cases greenhouse gases emissions. AD assays of some samples of restaurant food wastes were performed in batch laboratory, 500 mL reactors for determination of optimized start-up conditions. The tests were conducted in triplicate, using anaerobic sludge from a poultry slaughterhouse wastewater treatment as inoculum to start up the anaerobic biodigestors. The effect of three different substrates to inoculum mixing ratios 10:90 (S1), 20:80 (S2) and 30:70 (S3) was evaluated. The food waste used as substrate was previously homogenized and submitted to aerobic mechanical mixing for four days before it was fed in the reactors in anaerobic conditions at the mentioned proportions with the inoculum. The reactors were maintained at 35 ℃ and under mechanical mixing at 60 rpm. The methane production was monitored until its stabilization. Results showed that S1 presented the best performance during the initial 12 d, when it totalized 526 NmLCH4/gVSsubstrate.
文摘Food waste has developed as an alternative for the production of renewable fuels such as biogas from AD (anaerobic digestion). In relation to the biogas production rate, digester temperature setting is one of the very important factors for digester operation, especially in low temperature countries. In this study, the effect of digester temperature on biogas and methane production efficiency in the AD of food waste was evaluated. The two-stage anaerobic digestion has a total reactor volume of 60 L (acid reactor volume was 30 L and methane reactor volume was 30 L). They were incubated at mesophilic and thermophilic conditions for 25 days to determine temperature profiles for the AD process. The results of the laboratory-scale experiment show that maximum biogas production occurred at 55 ℃ (38.14 L of biogas) for a period of 11 days when compared to other temperatures. Second best was at 50 ℃ (37.44 L of biogas) for a period of 12 days, followed by 40 ℃ (35.36 L of biogas) for a period of 15 days. Thermophilic temperatures will be used in further studies to examine scaling up of the process.
文摘Hospitality industry and hotels are considered to waste a lot of food.This research aims to focus on food waste management in luxury hotels by investigating three luxury hotels in Budapest(Hungary).The investigation focuses on qualitative methods,eleven interviews and observations were made from September to December 2018.Results show that in luxury hotels the main challenge is to ensure the correct balance between 5*experience and minimizing food waste.It was found that kitchen,breakfast open-buffet and staff canteen are among the leading causes of food waste,generating even higher food waste compared to conferences,banquets,orála carte options.While a broad range of practices exist that are believed to minimize the food waste of buffets,most of the luxury hotels are only implementing a small ratio of such practices and are only in the beginning of the planning phase to expand their practices in this regard.
文摘AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy resoures. Biogas production by co-digestion of mixed Napier Pak Chong I and food waste at thermophilic temperature using anaerobic digestion in cow dung and chicken dung as the seed inoculums were investigated. The total reactor volume of the co-digester reactor was 7.94 m^3, which was equipped with pump, and it was operated continuously for the 20 days as a pilot scale at 50 ℃. The Napier Pak Chong I was cut into 2 mm sections, and the initial VS (volatile solids) was 30%. The initial VS of food waste were 70%. Two pilot-scale digesters filled with Napier Pak Chong I and food waste, which both digesters contained 476 kg of Napier Pak Chong I mixed 305 L of food waste, and 1305 L of water. There were carried out to investigate the optimum C/N (carbon to nitrogen) ratio for effective biogas production. The slurry raw materials provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.0). Digester I was designed for 1.98 m^3 of cow dung as the seed inoculum while digester II was designed to establish 1.98 m^3 of chicken dung as the seed inoculum. Gas detector performs analysis gas production. The m^3/day in digester I and 1.86 m^3/day from digester II, resulting in added, respectively. Biogas production in digester I was directly experimental results indicate that total biogas production was 2.19 specific methane yields of 1.26 m^3 CH4/kgVS and 1.07 m^3 CH4/kgVS correlated with temperature.
文摘A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of b-hydroxybutyrate (HB) and b-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer.
文摘More researches are needed to identify the relevant factors influencing the generation of food waste and devise preventive strategies. The objective of this study is to develop a checklist to assess the good management practices that have a positive impact on eliminating or minimizing food waste in food service units. A theoretical list of relevant factors impacting the generation of food waste during meal production is developed, taking into account administrative planning, receipt and storage of foods, and the preparation and distribution of meals by food service units. For each factor, several administrative and/or technical actions are identified. To validate the content, this list is submitted to a ten-member expert panel for a final evaluation. The factor (and its respective actions) is considered relevant if 80% of the expert panel members agree on its relevance. All actions employ a dichotomous response of Yes/No. Affirmative responses are expected because these actions are considered to be good management practices that have a positive impact on eliminating or minimizing food waste. Following the panel approval process, a checklist of 12 factors and 102 actions is detailed. The conceptual structure of the checklist for food waste management presented in this study enables a comprehensive understanding of the factors that impact food waste, providing a theoretical basis for future research into the relative importance of the relevant factors and actions identified in this study.
文摘This study suggested environmental and economic evaluations by developing a scenario according to the various treatment options of food waste in Korea. In particular, the study evaluated the possibility about the combined treatment of food waste and human excrement after using food waste disposers (FWDs). The scenario including only composting (133 kg CO2 equiv./ton-household organic waste) or only FWDs (125 kg CO2 equiv./ton-household organic waste) was superior to the other scenarios in the environmental aspect and the scenario including only composting (101 USD/ton-household organic waste) was superior to the other scenarios in the economic aspect. However, the study discovered that 52% of greenhouse gas emission was reduced when sewage pretreatment was conducted in houses after using FWDs and also when biogas was collected on site and utilized in the private power station. Furthermore, the energy saving effect due to recovery of biogas has found to be larger in the environment aspect than in the economic aspect.
文摘Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.
文摘Purpose: To analyze the odor components in food waste treatment process. Method: Cold trap enrichment-GC/MS technology was used to determine the component. Result: The detection results showed that the levels of odorant concentrations from the main processing units were ranked in the order of: temperature sterilization device > oil-water separator > anaerobic fermenter > separation equipment > unloading area. Oxygenated organic compounds were the main components. Conclusion: Ethanol, hydrogen sulfide, dimethyl disulfide, ammonia, limonene were characteristic pollutants in the unloading areas and separation equipment;ethanol, methyl mercaptan, hydrogen sulfide, dimethyl disulfide, limonene were characteristic pollutants in the temperature sterilization device and oil-water separator;ethanol, hydrogen sulfide, dimethyl disulfide, p-diethylbenzene, limonene were characteristic pollutants in the anaerobic fermenter.
文摘The determination of biochemical methane potential (BMP) is very important for the valorization of food wastes. This study is focused on the evaluation of the theoretical methane production from chemical oxygen demand (COD) of some food wastes, coming out Akouedo landfill. Almost all of the considered samples exhibited methane theoretical yields equal to about 402.5 - 507.8 mLCH4/gVS. These results indicate the suitability of all the studied food wastes from Akouedo landfill to be converted into energy.
文摘To save the cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation (CCSSF) system composed of a rotating drum reactor, a humidifier and a condenser has been developed. In this research, the feasibility of using this system for production of ethanol from food wastes was carried out. The ethanol conversion of bread crust and rice grain (uncooked rice) as substrates reached up to 100.9% ± 5.1% and 108.0% ± 7.9% (against theoretical yield), respectively. Even for bread crust, a processed starchy material which contained lower carbohydrate content than rice grain, the amount of ethanol obtained in a unit of CCSSF per year was higher due to easy saccharification and fermentation. The salt contained in potato chips directly affected yeast activity resulting to low ethanol conversion (80.7% ± 4.7% against theoretical yield).