期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Purifi cation and identification of anti-inflammatory peptides from sturgeon (Acipenser schrenckii) cartilage 被引量:1
1
作者 Li Yuan Qian Chu +3 位作者 Bei Yang Wei Zhang Quancai Sun Ruichang Gao 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2175-2183,共9页
Cartilage is a nonedible byproduct with little saleable value.However,previous studies have proposed the possibility of producing peptides from cartilage with immune function modulation potential.The current study aim... Cartilage is a nonedible byproduct with little saleable value.However,previous studies have proposed the possibility of producing peptides from cartilage with immune function modulation potential.The current study aimed to investigate the potential anti-inflammatory activity of peptides derived from sturgeon(Acipenser schrenckii)cartilage in lipopolysaccharide(LPS)-stimulated RAW264.7 macrophages.Five peptide sequences,including four novel peptides,were identified from ethanol-soluble cartilage hydrolysates.Among these five peptides,LTGP,LLLE,LLEL and VGPAGPAGP reduced the production of nitric oxide(NO)and interleukin-6(IL-6)while increasing interleukin-10(IL-10)excretion.Transcriptome analysis suggested the inhibition of activated mitogen-activated protein kinase(MAPK)and interleukin-17(IL-17)signaling pathways after LLEL intervention.MAPK,which is involved in the IL-17 signaling pathway,was further proved to be blocked by downregulating the phosphorylation of p38,extracellular-signal regulated protein kinase(ERK),and c-jun N-terminal kinase(JNK).This novel peptide offers an attractive approach to develop functional foods. 展开更多
关键词 Sturgeon cartilage peptides anti-inflammatory Mitogen-activated protein kinase
下载PDF
Molecular characteristics and structure–activity relationships of food-derived bioactive peptides 被引量:14
2
作者 YANG Fu-jia CHEN Xu +6 位作者 HUANG Mu-chen YANG Qian CAI Xi-xi CHEN Xuan DU Ming HUANG Jian-lian WANG Shao-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2313-2332,共20页
Peptides are functional active fragments of proteins which can provide nutrients needed for human growth and development,and they also have unique physiological activity characteristics relative to proteins.Bioactive ... Peptides are functional active fragments of proteins which can provide nutrients needed for human growth and development,and they also have unique physiological activity characteristics relative to proteins.Bioactive peptides contain a great deal of development potential.More specifically,food-derived bioactive peptides have the advantages of a wide variety of sources,unique structures,high efficiency and safety,so they have broad development prospects.This review provides an overview of the current advances regarding the preparation,functional characteristics,and structure–activity relationships of food-derived bioactive peptides.Moreover,the prospects for the future development and application of food-derived bioactive peptides are discussed.This review may provide a better understanding of foodderived bioactive peptides,and some constructive inspirations for further research and applications in the food industry. 展开更多
关键词 food-derived proteins bioactive peptides molecular characteristics structure–activity relationship
下载PDF
Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type I collagen synthesis on human dermal fibroblasts 被引量:8
3
作者 Marina Offengenden Subhadeep Chakrabarti Jianping Wu 《Food Science and Human Wellness》 SCIE 2018年第2期138-147,共10页
Collagen is a major extracellular matrix protein.Given the potential anti-inflammatory and antioxidant profiles of these bioactive compounds,there has been increasing interest in using collagen derived peptides and pe... Collagen is a major extracellular matrix protein.Given the potential anti-inflammatory and antioxidant profiles of these bioactive compounds,there has been increasing interest in using collagen derived peptides and peptide-rich collagen hydrolysates for skin health,due to their immunomodulatory,antioxidant and proliferative effects on dermal fibroblasts.However,all hydrolysates are not equally effective in exerting the beneficial effects;hence,further research is needed to determine the factors that improve the therapeutic applicability of such preparations.We used different enzymatic conditions to generate a number of different collagen hydrolysates with distinct peptide profiles.We found that the use of two rather than one enzyme for hydrolysis generates a greater abundance of low molecular weight peptides with consequent improvement in bioactive properties.Testing these hydrolysates on human dermal fibroblasts showed distinct actions on inflammatory changes,oxidative stress,type I collagen synthesis and cellular proliferation.Our findings suggest that different enzymatic conditions affect the peptide profile of hydrolysates and differentially regulate their biological activities and potential protective responses on dermal fibroblasts. 展开更多
关键词 Chicken collagen Collagen peptides Antioxidant activity anti-inflammatory activity Human dermal fibroblasts
下载PDF
Antioxidative,antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk:In-vitro,in-silico and molecular interaction studies 被引量:1
4
作者 Jodhani Keyur Ashokbhai Bethsheba Basaiawmoit +8 位作者 Sujit Das Amar Sakure Ruchika Maurya Mahendra Bishnoi Kanthi Kiran Kondepudi Srichandan Padhi Amit Kumar Rai Zhenbin Liu Subrota Hatia 《Food Bioscience》 SCIE 2022年第3期583-594,共12页
The antioxidative,antimicrobial,and anti-inflammatory properties of fermented sheep milk with L.fermentum (KGL4),as well as the generation of antioxidative and antimicrobial peptides,are evaluated in the study.Antioxi... The antioxidative,antimicrobial,and anti-inflammatory properties of fermented sheep milk with L.fermentum (KGL4),as well as the generation of antioxidative and antimicrobial peptides,are evaluated in the study.Antioxidative and antibacterial activities in sheep milk fermented with KGL4 increased with incubation hours,along with varied antioxidative properties (ABTS assay:35.12%,hydroxyl free radical scavenging assay:29.12%,superoxide free radical scavenging activity:36.38%).Antimicrobial activity of fermented sheep milk against E.faecalis (19 mm),S.typhimurium (15.67 mm),B.cereus (14 mm),and E.coli (13 mm) was also observed.Furthermore,after 48 h,the KGL4 showed maximum proteolysis (10.40 mg/ml) at 2.5% rate of addition sheep milk.The antioxidative and antimicrobial activities of fermented sheep milk fractions (3 kDa and 10 kDa permeates and retentates) were also investigated.The highest ABTS activity (26.90%) was found in 10 kDa permeate,whereas the 3 kDa retentate had higher hydroxyl free radical scavenging activity (69.20%) and 3 kDa permeate showed maximum superoxide free radical scavenging activity (32.85%).The 10 kDa retentate had shown maximum antimicrobial activity against S.typhimurium (13.67 mm) and E.faecalis (17.00 mm).Proteins spotted on 2D gel electrophoresis of KGL4 were varied from 10 to 70 kDa.RP-LC/MS was used to identify 5 novel peptide sequences from 2-D gel spots.Searches in the BIOPEP database confirmed the antioxidative and antimicrobial effects of the novel fermented sheep milk peptides.Fermented sheep milk with KGL4 (SMKGL4) significantly reduced excessive TNF-α,IL-6,& IL-1β production in LPS-activated RAW 264.7 cells. 展开更多
关键词 FERMENTATION Sheep milk Lactobacillus fermentum ANTIOXIDATIVE ANTIMICROBIAL anti-inflammatory peptides
原文传递
Structure, function, action mechanism and application prospect of black garlic peptide
5
作者 Meng-Han Yang Yuan-Yuan Wang Chun-Ming Dong 《Life Research》 2024年第4期17-28,共12页
Black garlic is a processed product derived from fresh garlic,retaining the original nutritional components of garlic while enhancing many of its biological activities.Black garlic peptides are a class of bioactive pe... Black garlic is a processed product derived from fresh garlic,retaining the original nutritional components of garlic while enhancing many of its biological activities.Black garlic peptides are a class of bioactive peptides extracted from fermented black garlic,which have gained considerable attention due to their unique health benefits.This article comprehensively discusses the extraction technologies,structural composition,biological functions,and application potential of black garlic peptides in agriculture,medicine,and the food industry.Extraction methods for black garlic peptides include ammonium sulfate precipitation,alkali-soluble acid-precipitation,enhanced hybrid supercritical fluid-assisted atomization(SAA-HCM),and others,which can efficiently separate bioactive peptides from black garlic.Structural and compositional analysis reveals the characteristics of black garlic peptides as small molecule peptides and the mechanisms of action of these peptides within the body.Black garlic peptides demonstrate health benefits such as antioxidation,anti-inflammatory effects,lipid-lowering properties,and immunomodulatory effects,providing scientific support for their applications in the medical field.In terms of application potential,black garlic peptides can be used as natural plant growth regulators and disease control agents in agriculture;in the medical field,their health benefits make them an important resource for developing new health supplements and drugs;in the food industry,black garlic peptides can serve as functional food additives to enhance the nutritional value and health benefits of foods.As a multifunctional bioactive substance,the optimization of extraction methods,in-depth studies of structure and function,and the development of applications in various fields will bring new opportunities for human health and industrial development.Future research should further explore the detailed mechanisms of action of black garlic peptides and their specific effects in different application domains to promote their wider use. 展开更多
关键词 black garlic black garlic peptide physiologic function anti-inflammatory
下载PDF
Identification and characterization of two novel cathelicidins from the frog Odorrana livida 被引量:5
6
作者 Ruo-Han Qi Yan Chen +5 位作者 Zhi-Lai Guo Fen Zhang Zheng Fang Kai Huang Hai-Ning Yu Yi-Peng Wang 《Zoological Research》 SCIE CAS CSCD 2019年第2期94-101,共8页
Antimicrobial peptides(AMPs) are a group of gene-encoded small peptides that play pivotal roles in the host immune system of multicellular organisms.Cathelicidins are an important family of AMPs that exclusively exist... Antimicrobial peptides(AMPs) are a group of gene-encoded small peptides that play pivotal roles in the host immune system of multicellular organisms.Cathelicidins are an important family of AMPs that exclusively exist in vertebrates. Many cathelicidins have been identified from mammals, birds, reptiles and fish. To date, however, cathelicidins from amphibians are poorly understood. In the present study, two novel cathelicidins(OL-CATH1 and 2) were identified and studied from the odorous frog Odorrana livida.Firstly, the cDNAs encoding the OL-CATHs(780 and735 bp in length, respectively) were successfully cloned from a lung cDNA library constructed for the frog. Multi-sequence alignment was carried out to analyze differences between the precursors of the OL-CATHs and other representative cathelicidins.Mature peptide sequences of OL-CATH1 and 2 were predicted(33 amino acid residues) and their secondary structures were determined(OL-CATH1 showed a random-coil conformation and OL-CATH2 demonstrated α-helical conformation). Furthermore,OL-CATH1 and 2 were chemically synthesized and their in vitro functions were determined. Antimicrobial and bacterial killing kinetic analyses indicated that OL-CATH2 demonstrated relatively moderate and rapid antimicrobial potency and exhibited strong anti-inflammatory activity. At very low concentrations(10 μg/mL), OL-CATH2 significantly inhibited the lipopolysaccharide(LPS)-induced transcription and production of pro-inflammatory cytokines TNF-α, IL-1βand IL-6 in mouse peritoneal macrophages. In contrast, OL-CATH1 did not exhibit any detectableantimicrobial or anti-inflammatory activities. Overall,identification of these OL-CATHs from O. livida enriches our understanding of the functions of cathelicidins in the amphibian immune system. The potent antimicrobial and anti-inflammatory activities of OL-CATH2 highlight its potential as a novel candidate in anti-infective drug development. 展开更多
关键词 ANTIMICROBIAL peptides (AMPs) CATHELICIDINS ODORRANA livida OL-CATHs ANTIMICROBIAL ACTIVITY anti-inflammatory ACTIVITY
下载PDF
Improvement of antibacterial, anti-inflammatory, and osteogenic properties of OGP loaded Co-MOF coating on titanium implants for advanced osseointegration 被引量:1
7
作者 Bailong Tao Weiwei Yi +5 位作者 Xian Qin Junjie Wu Kai Li Ai Guo Jie Hao Lixue Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期131-144,共14页
The bacterial infection,especially for methicillin-resistant Staphylococcus aureus(MRSA),and the associated severe inflammatory response could extremely limit the crosstalk of RAW264.7 cells and mesenchymal stem cells... The bacterial infection,especially for methicillin-resistant Staphylococcus aureus(MRSA),and the associated severe inflammatory response could extremely limit the crosstalk of RAW264.7 cells and mesenchymal stem cells(MSCs)and lead to the undesirable osseointegration of peri–implants.It is highly demanded to modify the surface of titanium(Ti)implant to improve its anti-bacterial and anti-inflammatory properties and facilitate its disabled osseointegration.Herein,in our study,a multifunctional coating of zeolitic imidazolate frameworks-67 encapsulated osteogenic growth peptide(OGP)(ZO)was fabricated on titanium dioxide nanotubes(TNT)substrates(TNT-ZO)via the electrophoresis deposition(EPD)approach.The TNT-ZO substrates exhibited excellent antibacterial activity indicated by the reactive oxygen species(ROS)generation,outer membrane(OM)and inner membrane(IM)permeabilization change,adenosine triphosphate(ATP)decrease,and intracellular compounds(DNA/RNA)leakage.Importantly,the regulation effects of TNT-ZO coating modified titanium substrates on the RAW264.7-MSCs crosstalk could induce the anti-inflammatory and osteogenic microenvironment via multiple paracrine signaling of Runx2,BMP2,VEGF,and TGF-β1.The promoted effects of coating structure were investigated in vivo,including antibacterial effect,osteogenic differentiation of mesenchymal stem cells,and anti-inflammation of RAW264.7 cells,as well as infected bone regeneration and repair in bone defect transplantation model.The results demonstrated that MRSA was effectively eliminated by the hydrolysis of ZIF-67 nanoparticles on TNT-ZO substrates.Furthermore,the excellent osseointegration of peri–implants was realized simultaneously by modulating the crosstalk of RAW264.7-MSCs.This study could provide a novel approach to designing a multifunctional coating on the Ti implants for infected bone regeneration in orthopedic applications. 展开更多
关键词 Titanium implants Osteogenic growth peptide anti-inflammatory Antibacterial activity Osteoimmunomodulation
原文传递
Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus
8
作者 Bingbing Xu Jing Ye +7 位作者 Bao-Shi Fan Xinjie Wang Ji-Ying Zhang Shitang Song Yifan Song Wen-Bo Jiang Xing Wang Jia-Kuo Yu 《Bioactive Materials》 SCIE CSCD 2023年第2期194-207,共14页
Meniscus is a wedge-shaped fibrocartilaginous tissue,playing important roles in maintaining joint stability and function.Meniscus injuries are difficult to heal and frequently progress into structural breakdown,which ... Meniscus is a wedge-shaped fibrocartilaginous tissue,playing important roles in maintaining joint stability and function.Meniscus injuries are difficult to heal and frequently progress into structural breakdown,which then leads to osteoarthritis.Regeneration of heterogeneous tissue engineering meniscus(TEM)continues to be a scientific and translational challenge.The morphology,tissue architecture,mechanical strength,and functional applications of the cultivated TEMs have not been able to meet clinical needs,which may due to the negligent attention on the importance of microenvironment in vitro and in vivo.Herein,we combined the 3D(three-dimensional)-printed gradient porous scaffolds,spatiotemporal partition release of growth factors,and anti-inflammatory and anti-oxidant microenvironment regulation of Ac2-26 peptide to prepare a versatile meniscus composite scaffold with heterogeneous bionic structures,excellent biomechanical properties and anti-inflammatory and anti-oxidant effects.By observing the results of cell activity and differentiation,and biomechanics under anti-inflammatory and anti-oxidant microenvironments in vitro,we explored the effects of anti-inflammatory and anti-oxidant microenvironments on construction of regional and functional heterogeneous TEM via the growth process regulation,with a view to cultivating a high-quality of TEM from bench to bedside. 展开更多
关键词 Tissue engineering meniscus Gradient porous scaffolds Spatiotemporal partition release Ac2-26 peptide anti-inflammatory and anti-oxidant regulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部