Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is e...Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is exploited to support gold nanoparticles fabricating HfTe_(2)-Au nanocomposites.The nanohybrids can serve as novel 2D surface-enhanced Raman scattering(SERS)substrate for the label-free detection of analyte with high sensitivity and reproducibility.Chemical mechanism originated from HfTe_(2) nanosheets and the electromagnetic enhancement induced by the hot spots on the nano-hybrids may largely contribute to the superior SERS effect of HfTe_(2)-Au nanocomposites.Finally,HfTe_(2)-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bac-teria,which realize the rapid and ultrasensitive Raman test of Escherichia coli,Listeria mono-cytogenes,Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to 1.7×10^(8).Combined with principal component analysis,HfTe_(2)-Au-based SERS analysis also completes the bacterial classification without extra treatment.展开更多
This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 ...This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 against S.flexneri_14 was 2.45 mg/mL and 18.75μg/mL,respectively.Growth and kill kinetics assays showed that the combined use of 1/2MIC PLA plus 1/2MIC XJS01 had a better activity against planktonic S.flexneri_14 compared to treatment with PLA and XJS01 used singly(1/2MIC and 2MIC).Cellular biochemical and morphological analysis revealed the remarkable ability of the combination in disrupting cell appearance and promoting deformation of planktonic S.flexneri_14 compared to single use.Moreover,S.flexneri_14 biofilm formation was inhibited and degraded by the combination,which showed a more remarkable antibiofilm activity than PLA and XJS01 when used singly.This study demonstrates the synergistic antibacterial activity of PLA and XJS01 against S.flexneri_14 in either planktonic or biofilm states in foods.展开更多
基金supported by the National Natural Science Foundation of China(11874021,61675072 and 21505047)the Science and Technology Project of Guangdong Province of China(2017A020215059)+2 种基金the Science and Technology Project of Guangzhou City(201904010323 and 2019050001)the Innovation Project of Graduate School of South China Normal University School(2019LKXM023)the Natural Science Research Project of Guangdong Food and Drug Vocational College(2019ZR01)
文摘Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is exploited to support gold nanoparticles fabricating HfTe_(2)-Au nanocomposites.The nanohybrids can serve as novel 2D surface-enhanced Raman scattering(SERS)substrate for the label-free detection of analyte with high sensitivity and reproducibility.Chemical mechanism originated from HfTe_(2) nanosheets and the electromagnetic enhancement induced by the hot spots on the nano-hybrids may largely contribute to the superior SERS effect of HfTe_(2)-Au nanocomposites.Finally,HfTe_(2)-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bac-teria,which realize the rapid and ultrasensitive Raman test of Escherichia coli,Listeria mono-cytogenes,Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to 1.7×10^(8).Combined with principal component analysis,HfTe_(2)-Au-based SERS analysis also completes the bacterial classification without extra treatment.
基金supported by Yunnan Fundamental Research Projects(Grant No.202101BE070001-046)the Natural Science Foundation of China(31960286).
文摘This study investigated antibacterial and antibiofilm activity of the combined use of phenyllactic acid(PLA)and bacteriocin XJS01 against Shigella flexneri_14.The minimum inhibitory concentration(MIC)of PLA and XJS01 against S.flexneri_14 was 2.45 mg/mL and 18.75μg/mL,respectively.Growth and kill kinetics assays showed that the combined use of 1/2MIC PLA plus 1/2MIC XJS01 had a better activity against planktonic S.flexneri_14 compared to treatment with PLA and XJS01 used singly(1/2MIC and 2MIC).Cellular biochemical and morphological analysis revealed the remarkable ability of the combination in disrupting cell appearance and promoting deformation of planktonic S.flexneri_14 compared to single use.Moreover,S.flexneri_14 biofilm formation was inhibited and degraded by the combination,which showed a more remarkable antibiofilm activity than PLA and XJS01 when used singly.This study demonstrates the synergistic antibacterial activity of PLA and XJS01 against S.flexneri_14 in either planktonic or biofilm states in foods.