Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element metho...Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.展开更多
Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi-...Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi- ciency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state- feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simu- lation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial dis- placement error (-1.5 m), heading error (-0.11 tad) and steering angle (-0.19 rad). Finally, simulation and exper- imental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articu- lated drum roller can lock into a desired path with the proposed method in uneven fields.展开更多
Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum bio...Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32,1, 64.2, 128, and 256 g ether/(m^3·h) (16.06 g ether/(m^3·h) ≈ 1.0 kg chemical oxygen demand (COD)/(m^3·d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m^3·h). However, when the VOC loading rate was increased to 256 g ether/(m^3·h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.展开更多
Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studi...Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.展开更多
The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyze...The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.展开更多
This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate th...This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand.Particle breakage increased in up convexity with increasing duration of drum tests,but increased linearly with increasing number of balls.Particle breakage showed an increase,followed by a decrease while increasing the amount of sand.There may be existence of a characteristic amount of sand causing a maximum particle breakage.Friction tests caused much less particle breakage than collision tests did.Friction and collision resulted in different mechanisms of particle breakage,mainly by abrasion for friction and by splitting for collision.The fines content increased with increasing relative breakage.Particle breakage in the friction tests(abrasion)resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests(splitting).For the collision tests,the fines content showed a decrease followed by an increase as the amount of sand increased,whereas it increased in up convexity with increasing number of balls.The characteristic grain sizes D_(10) and D_(30) decreased in down convexity with increasing relative breakage,which could be described by a natural exponential function.However,the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage.In addition,the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.展开更多
基金Projects(5137424151275531)supported by the National Natural Science Foundation of ChinaProject(CX2014B059)supported by the Innovation Foundation for Postgraduate of Hunan Province,China
文摘Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.
基金Supported by National Key Technology Support Program of China(Grant No.2015BAF07B05)Fundamental Research Funds for the Central Universities of China
文摘Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi- ciency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state- feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simu- lation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial dis- placement error (-1.5 m), heading error (-0.11 tad) and steering angle (-0.19 rad). Finally, simulation and exper- imental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articu- lated drum roller can lock into a desired path with the proposed method in uneven fields.
基金partially supported by the National Natural Science Foundation of China(No.50778066)the Program for New Century Excellent Talents in University from the Ministry of Education of China(No.NCET-05-0701)the University of Cincinnati.
文摘Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32,1, 64.2, 128, and 256 g ether/(m^3·h) (16.06 g ether/(m^3·h) ≈ 1.0 kg chemical oxygen demand (COD)/(m^3·d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m^3·h). However, when the VOC loading rate was increased to 256 g ether/(m^3·h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.
基金supported by a Collaborative Research and Development (CRD) Grants of The National Science and Engineering Research Council (NSERC) of Canada (CRD 350634-07 and CRDPJ 403054-10)
文摘Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.
文摘The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41807268)the“Belt&Road”International Cooperation Team for the“Light of West”Program of Chinese Academy of Sciences(Lijun Su),China,the Youth Innovation Promotion Association of Chinese Academy of Sciences,China(Grant No.2018408)China Postdoctoral Science Foundation(Grant No.2019T120864).
文摘This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision,by a number of drum tests on granular materials(silica sand No.3 and ceramic balls)to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand.Particle breakage increased in up convexity with increasing duration of drum tests,but increased linearly with increasing number of balls.Particle breakage showed an increase,followed by a decrease while increasing the amount of sand.There may be existence of a characteristic amount of sand causing a maximum particle breakage.Friction tests caused much less particle breakage than collision tests did.Friction and collision resulted in different mechanisms of particle breakage,mainly by abrasion for friction and by splitting for collision.The fines content increased with increasing relative breakage.Particle breakage in the friction tests(abrasion)resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests(splitting).For the collision tests,the fines content showed a decrease followed by an increase as the amount of sand increased,whereas it increased in up convexity with increasing number of balls.The characteristic grain sizes D_(10) and D_(30) decreased in down convexity with increasing relative breakage,which could be described by a natural exponential function.However,the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage.In addition,the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.