This paper deals with the assessment of vibro-acoustic properties of a multifunctional carbon fiber reinfo rced panel manu factured by bulk infu sion,a modified resin film infusion process.The components of the epoxy ...This paper deals with the assessment of vibro-acoustic properties of a multifunctional carbon fiber reinfo rced panel manu factured by bulk infu sion,a modified resin film infusion process.The components of the epoxy resin were chosen to contrast the electrical insulating property and poor flame resistance of the epoxy resins impregnating carbon woven fabric.To confer electrical conductivity to the resin a percentage of 0.5 wt%of Multi-Wall Carbon Nanotubes(MWCNTs)was dispersed in the resin,whereas to increase flame resistance a percentage of 5 wt%of Glycidil Polyhedral Oligomeric Silsesquioxanes(GPOSS)was solubilized in the epoxy mixture.Furthermore,as hardener agents,a mixture of 4,4’-DiaminoDiphenyl Sulfone(DDS)(53.4 wt%)and Bis(3-Aminophenyl)Methyl Phosphine Oxide(BAMPO)(46.7 wt%)was used.The values of the electrical conductivity were found satisfactory enough,being4.02×10^(-2)S/m for the multifunctional resin and 1.39×10^(4)S/m for the in-plane conductivity of the panel,whereas the Limiting Oxygen Index(LOI)value of the multifunctional resin was found to increase from 27%to 36%.Considering these promising results,an experimental assessment of the vibro-acoustic properties of the manufactured multifunctional panel was also performed.The panel was tested mainly to evaluate its low-frequency vibration damping and sound insulation characteristics.The manufactured panel demonstrated an improved efficiency if compared to a baseline configuration,presenting almost the double modal damping and a gain of 10 dB on the global noise reduction.展开更多
The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a serie...The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.展开更多
The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-...The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-Fermi equation is solved self-consistently in the cases of (a) semi-infinite planes of jellium (i.e. smeared uniform positive ions) and (b) a semi-infinite cylinder of finite radius, cleaved by a plane perpendicular to its axis. In (a), the elastic region has the form F(z)=Az ∝ Zrs-11/2, where rs is the mean interelectronic distance in the jellium model. Size effects are then considered, with possible relevance to atomic force microscopy.Defect energies are treated, using both electron theory and pair force laws.展开更多
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper...In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure c...CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure cross multiple scales after expression and secretion by E.Coli cells.Previous researches show that CsgA nanofibers could provide adhesion,stiffness,and mechanical homogeneity for the biofilms,host cells’fibronectin binding for internalization,or protection against phage attack.CsgA nanofibers have obtained various applications in material science and synthetic biology.To illustrate,CsgA nanofibers have characteristics of intrinsic hierarchical structures across multiple scales,robustness in harsh environments and programmable functionality via biological tools.Studying the force spectrum or mechanical properties of the nanofiber can provide fundamental information of self-assembly process and ultra-stability in extreme conditions.Single molecule techniques such as atomic force microscopy,optical tweezers,and magnetic tweezers have been widely applied to study proteins.In these studies,proteins are usually chemically conjugated or genetically constructed to have a tag such as histidine,cysteine or biotin.Genetic engineering requires modification of the plasmids encoding the specific protein,and also involve special protein expression and purification.Such study needs collaboration from multi-disciplinary.It normally studies one protein at a time which gives out clear signal but lacks throughput and efficiency.Here we have established a simple method to measure all kinds of proteins without labels.The carboxyl terminus of a protein is attached to the amine group on a magnetic bead,and the amine terminus of the protein is attached to glutaraldehyde on the glass slide.Then we used magnetic tweezers to manipulate and stretched the bead and protein.Extension versus rotation relation was used to identify a single protein or protein fibril.The fiber under tension is also observed by Scanning Electronic Microcopy which convinces that single CsgA-His fibril is linked to a microbead.The peak of diameter distribution is around 15 nm.The fracture of fibers was observed in real time on SEM.Force-extension curves of single fibers are obtained in real time.The force-extension curves generally agree with the worm like chain model.The persistence lengths from the fitting are from 0.9 to 49.8 nm.The elongation ratio increases gradually with force until reaches a plateau.The maximum elongation ratio of 78 nanofibers were made into an elongation ratio distribution diagram,more than half of CsgA-His nanofibers has an elongation ratio from 0 to 2,some are distributed in 2~10,and a few are distributed in 10~18.The maximum elongation ratio of CsgA-His nanofibers is 17.1,indicating that the fibril’s flexibility is much higher than DNA or silk fiber.For forces less than 20 pN,the extension was reversible.With a 42.1 pN holding force,the extension jumped in steps of from 30 to 365 nm and was irreversible.At the scale tested,the jumps corresponded to the unfolding of multiple beta sheets in the fiber.Work for CsgA-His nanofibers during stretching increase with the normalized strain fractions.The experimental data agree with a theoretical prediction for a single CsgA protein from a SMD calculation.Therefore,our results provide key information for the understandings of CsgA protein nanofiber assembly and biofilm robustness.展开更多
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti...The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.展开更多
Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and...Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and substrate. Surface Forces Apparatus(SFA) technique, specializing in surface interaction studies, is introduced to investigate the e ects of DNA concentration on the formation of single?stranded DNA(ss?DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss?DNA construct a dense layer on mica. Besides, it is also indicated that at di erent DNA concentrations, ss?DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross?link at 100 ng/μL, and these ss?DNA structures are stable enough due to the repeatabil?ity even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured:/m at 100 ng/μL, respectively, which is attributed to the ion?correlation e ect. M-6.5 mN/m at 50 ng/μL and-5.3 mNoreover, the atomic force microscopy(AFM) images reveal the entire surface is covered with wormlike ss?DNA and the measured surface roughness(1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss?DNA layer from mica surface occur by adding sodium salt into gap bu er, which is mainly ascribed to the decreased ion?ion cor?relation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA?based devices in nanoscale.展开更多
The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive a...The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive and added in concrete by substitution of Portland cement (CEM I 52.5N) at contents of 0, 5 and 10% by conserving a constant water/cement ratio value of 0.65. The effects of the partial replacement of cement by attapulgite on the physicochemical and mechanical properties of the concrete as well as on the steel-concrete bond were examined. For this purpose, the water porosity, the intrinsic permeability and the density of the clay-based concrete were evaluated. Compression, tensile and pull-out tests were carried out to determine the impact of clay on the Young modulus, the compressive and tensile strengths and the steel-concrete bond. This study was completed by a characterization of the pozzolanic reactivity of calcined attapulgite. All the results of these studies were compared with those of Portland cement as a reference. The substitution of cement by attapulgite up to 10% in concrete has only a small influence on its porosity and permeability and confers to the concrete gain in compressive strength of 11%. However, it caused a loss of steel-concrete bond of 10%.展开更多
The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#...The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#) and one styrene-butadiene-styrene (SBS) modified asphalt are chosen. The influence of short-term aging is also studied. Based on the knowledge of asphalt's microproperties, the relationship between microstructures and healing property is analyzed. The results indicate that the microstructures of three asphalts are quite different and the effects of aging on the surface characteristics for different asphalts are also different. It is proposed that the bee structure is a type of wax crystal and it has a close relationship with the "bridge-healing" mechanism. The findings may reveal the formation mechanism of microstructure and the healing property for asphalts.展开更多
There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity...There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.展开更多
The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The se...The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.展开更多
The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical proper...The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations.展开更多
To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- ...To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).展开更多
A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated sil...A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.展开更多
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation...The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.展开更多
Background:The steady-state increase in muscle force generating potential following a lengthening contraction is called residual force enhancement(RFE).In this study,we aimed to test for differences in torque,electrom...Background:The steady-state increase in muscle force generating potential following a lengthening contraction is called residual force enhancement(RFE).In this study,we aimed to test for differences in torque,electromyographic activity(EMG),and the associated neuromuscular efficiency(NME)between isometric voluntary contractions of elbow flexors preceded and not preceded by a lengthening contraction.The dependence of such differences on(i)stretch amplitude,(ii)the region of the force-length(FxL)relationship where contraction occurs,and(iii)the individual's ability to produce(negative)work during the stretch was investigated.Methods:Sixteen healthy adults participated in the study.Elbow flexor torque,angle,and biceps brachii EMG for purely isometric contractions(reference contractions)and for isometric contractions preceded by active stretches of 20°and 40°were measured at the ascending,plateau,and descending regions of subject-specific FxL curves.All contractions were performed in an isokinetic dynamometer.Two-factor(stretch×FxL region)repeated measures analysis of variance ANOVAs was used to analyze the effect of active stretch on EMG,torque,and NME across conditions.The relationships between mechanical work during stretch-calculated as the torque-angular displacement integral-and the changes in EMG,torque,and NME were analyzed using Pearson correlation.Results:In general,torque,EMG,and NME following active stretches differed from the values observed for the purely isometric reference contractions.While although the detailed effects of active stretch on torque and EMG differed between regions of the FxL relationship,NME increased by about 19%for all muscle lengths.Up to 30%of the interindividual variability in torque generating potential change in response to active stretching was accounted for by differences in(negative)work capacity between subjects.Conclusion:Our results suggest that(i)RFE contributes to"flatten"the elbow flexor torque-angle relationship,favoring torque production at lengths where the purely isometric torques are reduced substantially,and(ii)RFE contributes to a reduction in energy cost of torque production during isometric contractions for the entire operating range.展开更多
Objective:We reviewed and appraised the existing evidence of in vivo manifestations of residual force enhancement in human skeletal muscles and assessed,through a meta-analysis,the effect of an immediate history of ec...Objective:We reviewed and appraised the existing evidence of in vivo manifestations of residual force enhancement in human skeletal muscles and assessed,through a meta-analysis,the effect of an immediate history of eccentric contraction on the subsequent torque capacity of voluntary and electrically evoked muscle contractions.Methods:Our search was conducted from database inception to May 2020.Descriptive information was extracted from,and quality was assessed for,45 studies.Meta-analyses and metaregressions were used to analyze residual torque enhancement and its dependence on the angular amplitude of the preceding eccentric contraction.Results:Procedures varied across studies with regards to muscle group tested,angular stretch amplitude,randomization of contractions,time window analyzed,and verbal command.Torque capacity in isometric(constant muscle tendon unit length and joint angle)contractions preceded by an eccentric contraction was typically greater compared to purely isometric contractions,and this effect was greater for electrically evoked muscle contractions than voluntary contractions.Residual torque enhancement differed across muscle groups for the voluntary contractions,with a significant enhancement in torque observed for the adductor pollicis,ankle dorsiflexors,ankle plantar flexors,and knee extensors,but not for the elbow and knee flexors.Meta-regressions revealed that the angular amplitude of the eccentric contraction(normalized to the respective joints full range of motion)was not associated with the residual torque enhancement observed.Conclusion:There is evidence of residual torque enhancement for most,but not all,muscle groups,and residual torque enhancement is greater for electrically evoked than for voluntary contractions.Contrary to our hypothesis,and contrary to generally accepted findings on isolated muscle preparations,residual torque enhancement in voluntary and electrically evoked contractions does not seem to depend on the angular amplitude of the preceding eccentric contraction.展开更多
To find out the reason of resulting in the crease recovery of a fabric and provide theoretical guidance for designing a new material with good creasing-recovery property,the relationship between the creasing-recovery ...To find out the reason of resulting in the crease recovery of a fabric and provide theoretical guidance for designing a new material with good creasing-recovery property,the relationship between the creasing-recovery force and the crease-recovery angle of a woven fabric was investigated by self-setup experimental device.The results show that the crease-recovery angle of a woven fabric is correlated with the creasing-recovery force of the fabric in a linear relation.Furthermore,it is found that the internal stress is the principal force of affecting the creasing-recovery property of a woven fabric.In addition,the relationship between the tensile property of a woven fabric and the creasing-recovery property of the fabric has also been investigated,showing that the lower relaxation velocity of tensile stress of a fabric is,the better creasing-recovery property of the fabric has.展开更多
文摘This paper deals with the assessment of vibro-acoustic properties of a multifunctional carbon fiber reinfo rced panel manu factured by bulk infu sion,a modified resin film infusion process.The components of the epoxy resin were chosen to contrast the electrical insulating property and poor flame resistance of the epoxy resins impregnating carbon woven fabric.To confer electrical conductivity to the resin a percentage of 0.5 wt%of Multi-Wall Carbon Nanotubes(MWCNTs)was dispersed in the resin,whereas to increase flame resistance a percentage of 5 wt%of Glycidil Polyhedral Oligomeric Silsesquioxanes(GPOSS)was solubilized in the epoxy mixture.Furthermore,as hardener agents,a mixture of 4,4’-DiaminoDiphenyl Sulfone(DDS)(53.4 wt%)and Bis(3-Aminophenyl)Methyl Phosphine Oxide(BAMPO)(46.7 wt%)was used.The values of the electrical conductivity were found satisfactory enough,being4.02×10^(-2)S/m for the multifunctional resin and 1.39×10^(4)S/m for the in-plane conductivity of the panel,whereas the Limiting Oxygen Index(LOI)value of the multifunctional resin was found to increase from 27%to 36%.Considering these promising results,an experimental assessment of the vibro-acoustic properties of the manufactured multifunctional panel was also performed.The panel was tested mainly to evaluate its low-frequency vibration damping and sound insulation characteristics.The manufactured panel demonstrated an improved efficiency if compared to a baseline configuration,presenting almost the double modal damping and a gain of 10 dB on the global noise reduction.
基金Supported by the National Natural Science Foundation of China(No.51175373)New Century Educational Talents Plan of Chinese Education Ministry(No.NCET-10-0625)+1 种基金Key Technology and Development Program of Tianjin Municipal Science and Technology Commission(No.12ZCDZSY10600)Tianjin Key Laboratory of High Speed Cutting&Precision Machining(TUTE)(2013120024001167)
文摘The force model during needle insertion into soft tissue is important for accurate percutaneous intervention.In this paper,a force model for needle insertion into a tissue- equivalent material is presented and a series of experiments are conducted to acquire data from needle soft- tissue interaction process.In order to build a more accurate insertion force model,the interaction force between a surgical needle and soft tissue is divided into three parts:stiffness force,friction force,and cutting force.The stiffness force is modeled on the basis of contact mechanics model.The friction force model is presented using a modified Winkler' s foundation model.The cutting force is viewed as a constant depending on a given tissue.The proposed models in the paper are established on the basis of the mechanical properties and geometric parameters of the needle and soft tissue.The experimental results illustrate that the force models are capable of predicting the needle-tissue interaction force.The force models of needle insertion can provide real-time haptic feedback for robot-assisted procedures,thereby improving the accuracy and safety of surgery.
文摘The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-Fermi equation is solved self-consistently in the cases of (a) semi-infinite planes of jellium (i.e. smeared uniform positive ions) and (b) a semi-infinite cylinder of finite radius, cleaved by a plane perpendicular to its axis. In (a), the elastic region has the form F(z)=Az ∝ Zrs-11/2, where rs is the mean interelectronic distance in the jellium model. Size effects are then considered, with possible relevance to atomic force microscopy.Defect energies are treated, using both electron theory and pair force laws.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan (463855/7)
文摘In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金supported by the National Science Foundation of China ( 11772133, 11372116)
文摘CsgA protein monomers consist of aβ-helix of five repeat units possessing several conservative residues and thus,inherently fibrillate.CsgA protein monomers could self-assemble into hierarchical nanofiber structure cross multiple scales after expression and secretion by E.Coli cells.Previous researches show that CsgA nanofibers could provide adhesion,stiffness,and mechanical homogeneity for the biofilms,host cells’fibronectin binding for internalization,or protection against phage attack.CsgA nanofibers have obtained various applications in material science and synthetic biology.To illustrate,CsgA nanofibers have characteristics of intrinsic hierarchical structures across multiple scales,robustness in harsh environments and programmable functionality via biological tools.Studying the force spectrum or mechanical properties of the nanofiber can provide fundamental information of self-assembly process and ultra-stability in extreme conditions.Single molecule techniques such as atomic force microscopy,optical tweezers,and magnetic tweezers have been widely applied to study proteins.In these studies,proteins are usually chemically conjugated or genetically constructed to have a tag such as histidine,cysteine or biotin.Genetic engineering requires modification of the plasmids encoding the specific protein,and also involve special protein expression and purification.Such study needs collaboration from multi-disciplinary.It normally studies one protein at a time which gives out clear signal but lacks throughput and efficiency.Here we have established a simple method to measure all kinds of proteins without labels.The carboxyl terminus of a protein is attached to the amine group on a magnetic bead,and the amine terminus of the protein is attached to glutaraldehyde on the glass slide.Then we used magnetic tweezers to manipulate and stretched the bead and protein.Extension versus rotation relation was used to identify a single protein or protein fibril.The fiber under tension is also observed by Scanning Electronic Microcopy which convinces that single CsgA-His fibril is linked to a microbead.The peak of diameter distribution is around 15 nm.The fracture of fibers was observed in real time on SEM.Force-extension curves of single fibers are obtained in real time.The force-extension curves generally agree with the worm like chain model.The persistence lengths from the fitting are from 0.9 to 49.8 nm.The elongation ratio increases gradually with force until reaches a plateau.The maximum elongation ratio of 78 nanofibers were made into an elongation ratio distribution diagram,more than half of CsgA-His nanofibers has an elongation ratio from 0 to 2,some are distributed in 2~10,and a few are distributed in 10~18.The maximum elongation ratio of CsgA-His nanofibers is 17.1,indicating that the fibril’s flexibility is much higher than DNA or silk fiber.For forces less than 20 pN,the extension was reversible.With a 42.1 pN holding force,the extension jumped in steps of from 30 to 365 nm and was irreversible.At the scale tested,the jumps corresponded to the unfolding of multiple beta sheets in the fiber.Work for CsgA-His nanofibers during stretching increase with the normalized strain fractions.The experimental data agree with a theoretical prediction for a single CsgA protein from a SMD calculation.Therefore,our results provide key information for the understandings of CsgA protein nanofiber assembly and biofilm robustness.
基金the Ministry of Human Resource and Development,Government of India for providing the financial assistantship in the form of fellowship。
文摘The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.
基金National Natural Science Foundation of China(Grant No.51435003)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20160670)
文摘Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and substrate. Surface Forces Apparatus(SFA) technique, specializing in surface interaction studies, is introduced to investigate the e ects of DNA concentration on the formation of single?stranded DNA(ss?DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss?DNA construct a dense layer on mica. Besides, it is also indicated that at di erent DNA concentrations, ss?DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross?link at 100 ng/μL, and these ss?DNA structures are stable enough due to the repeatabil?ity even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured:/m at 100 ng/μL, respectively, which is attributed to the ion?correlation e ect. M-6.5 mN/m at 50 ng/μL and-5.3 mNoreover, the atomic force microscopy(AFM) images reveal the entire surface is covered with wormlike ss?DNA and the measured surface roughness(1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss?DNA layer from mica surface occur by adding sodium salt into gap bu er, which is mainly ascribed to the decreased ion?ion cor?relation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA?based devices in nanoscale.
文摘The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive and added in concrete by substitution of Portland cement (CEM I 52.5N) at contents of 0, 5 and 10% by conserving a constant water/cement ratio value of 0.65. The effects of the partial replacement of cement by attapulgite on the physicochemical and mechanical properties of the concrete as well as on the steel-concrete bond were examined. For this purpose, the water porosity, the intrinsic permeability and the density of the clay-based concrete were evaluated. Compression, tensile and pull-out tests were carried out to determine the impact of clay on the Young modulus, the compressive and tensile strengths and the steel-concrete bond. This study was completed by a characterization of the pozzolanic reactivity of calcined attapulgite. All the results of these studies were compared with those of Portland cement as a reference. The substitution of cement by attapulgite up to 10% in concrete has only a small influence on its porosity and permeability and confers to the concrete gain in compressive strength of 11%. However, it caused a loss of steel-concrete bond of 10%.
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20120092110053)
文摘The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#) and one styrene-butadiene-styrene (SBS) modified asphalt are chosen. The influence of short-term aging is also studied. Based on the knowledge of asphalt's microproperties, the relationship between microstructures and healing property is analyzed. The results indicate that the microstructures of three asphalts are quite different and the effects of aging on the surface characteristics for different asphalts are also different. It is proposed that the bee structure is a type of wax crystal and it has a close relationship with the "bridge-healing" mechanism. The findings may reveal the formation mechanism of microstructure and the healing property for asphalts.
文摘There are large uncertainties in the quantitative assessment of radiative effects due to atmospheric dust aerosol. The optical properties contribute much to those uncertainties. The authors perform several sensitivity experiments to estimate the impacts of optical characteristics on regional radiative forcing in this paper. The experiments involve in refractive indices, single scattering aibedo, asymmetry factor and optical depth. An updated dataset of refractive indices representing East Asian dust and the one recommended by the World Meteorology Organization (WMO) are contrastively analyzed and used. A radiative transfer code for solar and thermal infrared radiation with detailed aerosol parameterization is employed. The strongest emphasis is on the refractive indices since other optical parameters strongly depend on it, and the authors found a strong sensitivity of radiative forcing on refractive indices. Studies show stronger scattering, weaker absorption and forward scattering of the East Asian dust particles at solar wavelengths, which leads to higher negative forcing, lower positive forcing and bigger net forcing at the top of the atmosphere (TOA) than that of the WMO dust model. It is also found that the TOA forcings resulting from these two dust models have opposite signs in certain regions, which implies the importance of accurate measurements of optical properties in the quantitative estimation of radiative forcing.
基金supported by grants from the National Key Project of Basic Research (2006CB403702 and 2006CB403701)the CAMS Basis Research Project and National Natural Science Foundation of China under Grant No. 40405001
文摘The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.
基金supported jointly by the grant from National Basic Research Program of China(Grant No.2012CB955303)and from the Office of Biological and Environmental Sciences,US Department of Energy
文摘The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations.
基金This project is supported by National Natural ScienceFoundation of China (No.59835180) and Science andTechnology Foundatio
文摘To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50575123 and 50730007)China Scholarship Council (CSC) and German Research Foundation (DFG)
文摘A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.
文摘The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.
文摘Background:The steady-state increase in muscle force generating potential following a lengthening contraction is called residual force enhancement(RFE).In this study,we aimed to test for differences in torque,electromyographic activity(EMG),and the associated neuromuscular efficiency(NME)between isometric voluntary contractions of elbow flexors preceded and not preceded by a lengthening contraction.The dependence of such differences on(i)stretch amplitude,(ii)the region of the force-length(FxL)relationship where contraction occurs,and(iii)the individual's ability to produce(negative)work during the stretch was investigated.Methods:Sixteen healthy adults participated in the study.Elbow flexor torque,angle,and biceps brachii EMG for purely isometric contractions(reference contractions)and for isometric contractions preceded by active stretches of 20°and 40°were measured at the ascending,plateau,and descending regions of subject-specific FxL curves.All contractions were performed in an isokinetic dynamometer.Two-factor(stretch×FxL region)repeated measures analysis of variance ANOVAs was used to analyze the effect of active stretch on EMG,torque,and NME across conditions.The relationships between mechanical work during stretch-calculated as the torque-angular displacement integral-and the changes in EMG,torque,and NME were analyzed using Pearson correlation.Results:In general,torque,EMG,and NME following active stretches differed from the values observed for the purely isometric reference contractions.While although the detailed effects of active stretch on torque and EMG differed between regions of the FxL relationship,NME increased by about 19%for all muscle lengths.Up to 30%of the interindividual variability in torque generating potential change in response to active stretching was accounted for by differences in(negative)work capacity between subjects.Conclusion:Our results suggest that(i)RFE contributes to"flatten"the elbow flexor torque-angle relationship,favoring torque production at lengths where the purely isometric torques are reduced substantially,and(ii)RFE contributes to a reduction in energy cost of torque production during isometric contractions for the entire operating range.
文摘Objective:We reviewed and appraised the existing evidence of in vivo manifestations of residual force enhancement in human skeletal muscles and assessed,through a meta-analysis,the effect of an immediate history of eccentric contraction on the subsequent torque capacity of voluntary and electrically evoked muscle contractions.Methods:Our search was conducted from database inception to May 2020.Descriptive information was extracted from,and quality was assessed for,45 studies.Meta-analyses and metaregressions were used to analyze residual torque enhancement and its dependence on the angular amplitude of the preceding eccentric contraction.Results:Procedures varied across studies with regards to muscle group tested,angular stretch amplitude,randomization of contractions,time window analyzed,and verbal command.Torque capacity in isometric(constant muscle tendon unit length and joint angle)contractions preceded by an eccentric contraction was typically greater compared to purely isometric contractions,and this effect was greater for electrically evoked muscle contractions than voluntary contractions.Residual torque enhancement differed across muscle groups for the voluntary contractions,with a significant enhancement in torque observed for the adductor pollicis,ankle dorsiflexors,ankle plantar flexors,and knee extensors,but not for the elbow and knee flexors.Meta-regressions revealed that the angular amplitude of the eccentric contraction(normalized to the respective joints full range of motion)was not associated with the residual torque enhancement observed.Conclusion:There is evidence of residual torque enhancement for most,but not all,muscle groups,and residual torque enhancement is greater for electrically evoked than for voluntary contractions.Contrary to our hypothesis,and contrary to generally accepted findings on isolated muscle preparations,residual torque enhancement in voluntary and electrically evoked contractions does not seem to depend on the angular amplitude of the preceding eccentric contraction.
文摘To find out the reason of resulting in the crease recovery of a fabric and provide theoretical guidance for designing a new material with good creasing-recovery property,the relationship between the creasing-recovery force and the crease-recovery angle of a woven fabric was investigated by self-setup experimental device.The results show that the crease-recovery angle of a woven fabric is correlated with the creasing-recovery force of the fabric in a linear relation.Furthermore,it is found that the internal stress is the principal force of affecting the creasing-recovery property of a woven fabric.In addition,the relationship between the tensile property of a woven fabric and the creasing-recovery property of the fabric has also been investigated,showing that the lower relaxation velocity of tensile stress of a fabric is,the better creasing-recovery property of the fabric has.