本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个...本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个模式中太平洋北赤道逆流(NECC)的模拟结果。我们发现LICOM3和POP2模拟的NECC强度均弱于实测,这和Sun et al.(2019)的研究结果一致,也进一步证明了海洋模式中NECC偏弱是CORE-IAF外强迫场造成的,海表风应力及对应的风应力旋度是海洋模式准确模拟NECC的最主要因子。同时,我们也分析了NECC的模拟在动力机制上的差别,这里的动力强迫项包括风应力项、平流项和余项。我们发现模式的外强迫场虽然相同,但是两个模式中各动力强迫项(风应力项、平流项和余项)对NECC模拟的影响并不完全相同。展开更多
This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordina...This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.展开更多
In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second der...In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second derivatives of potential energy (i. e. the force constant matrix elements) have been calculated analytically. Hence the entire force fields of the two isomers of nitro- somethanol have been obtained theoretically. The theoretical vibrational frequencies and the corres- ponding normal modes were obtained and compared with the experimental values. and the structures of two isomeric forms of nitrosomethanol are established.展开更多
文摘本文用CORE-IAF(Coordinated Ocean-ice Reference Experiments–Interannual Forcing)外强迫场分别强迫LICOM3(LASG/IAP Climate System Ocean Model Version 3)和POP2(Parallel Ocean Program version 2)两个海洋模式,并分析了这两个模式中太平洋北赤道逆流(NECC)的模拟结果。我们发现LICOM3和POP2模拟的NECC强度均弱于实测,这和Sun et al.(2019)的研究结果一致,也进一步证明了海洋模式中NECC偏弱是CORE-IAF外强迫场造成的,海表风应力及对应的风应力旋度是海洋模式准确模拟NECC的最主要因子。同时,我们也分析了NECC的模拟在动力机制上的差别,这里的动力强迫项包括风应力项、平流项和余项。我们发现模式的外强迫场虽然相同,但是两个模式中各动力强迫项(风应力项、平流项和余项)对NECC模拟的影响并不完全相同。
基金financially supported by the National Natural Science Foundation of China(Grant No.51179199)
文摘This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.
文摘In this paper, the equilibrium geometries of two isomers of the newly found compound ——nitrosomethanol——have been optimized by ab initio SCF MO method with 3-21G basic set by gradient technique. And the second derivatives of potential energy (i. e. the force constant matrix elements) have been calculated analytically. Hence the entire force fields of the two isomers of nitro- somethanol have been obtained theoretically. The theoretical vibrational frequencies and the corres- ponding normal modes were obtained and compared with the experimental values. and the structures of two isomeric forms of nitrosomethanol are established.