期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
WRIST FORCE SENSOR'S DYNAMIC PERFORMANCE CALIBRATION BASED ON NEGATIVE STEP RESPONSE 被引量:2
1
作者 ZHENG Hongmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期92-96,共5页
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. T... Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function. 展开更多
关键词 Wrist force sensor Dynamic performance calibration Step response experiment correlation wavelet transfer Impulse response function
下载PDF
A multi-field approach to DNA condensation
2
作者 冉诗勇 贾俊丽 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期28-37,共10页
DNA condensation is an important process in many fields including life sciences, polymer physics, and applied technology. In the nucleus, DNA is condensed into chromosomes. In polymer physics, DNA is treated as a semi... DNA condensation is an important process in many fields including life sciences, polymer physics, and applied technology. In the nucleus, DNA is condensed into chromosomes. In polymer physics, DNA is treated as a semi-flexible molecule and a polyelectrolyte. Many agents, including multi-valent cations, surfactants, and neutral poor solvents, can cause DNA condensation, also referred to as coil–globule transition. Moreover, DNA condensation has been used for extraction and gene delivery in applied technology. Many physical theories have been presented to elucidate the mechanism underlying DNA condensation, including the counterion correlation theory, the electrostatic zipper theory, and the hydration force theory. Recently several single-molecule studies have focused on DNA condensation, shedding new light on old concepts. In this document, the multi-field concepts and theories related to DNA condensation are introduced and clarified as well as the advances and considerations of single-molecule DNA condensation experiments are introduced. 展开更多
关键词 DNA condensation coil–globule transition polyelectrolyte Manning theory counterion correlation hydration force single-molecule magnetic tweezers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部