Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of conti...Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of continents may generate enormous force on continents. Continents are physically fixed on the top of the lithosphere that has been already broken into individual plates, this attachment enables the force to be laterally transferred to the lithospheric plates. In this study, we combine the force and the existing plate driving forces (i.e., ridge push, slab pull, collisional, and shearing) to account for plate motion. We show that the modelled movements for the South American, African, North American, Eurasian, Australian, Pacific plates are well agreement with the observed movements in both speed and azimuth, with a Root Mean Square Error (RMSE) of the modelled speed against the observed speed of 0.91, 3.76, 2.77, 2.31, 7.43, and 1.95 mm/yr, respectively.展开更多
In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates w...In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.展开更多
The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of moti...The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.展开更多
The magnetic-elasticity buckling problem of a current plate under the action of a mechanical load in a magnetic field was studied by using the Mathieu function. According to the magnetic-elasticity non-linear kinetic ...The magnetic-elasticity buckling problem of a current plate under the action of a mechanical load in a magnetic field was studied by using the Mathieu function. According to the magnetic-elasticity non-linear kinetic equation, physical equations, geometric equations, the expression for Lorenz force and the electrical dynamic equation, the magnetic-elasticity dynamic buckling equation is derived. The equation is changed into a standard form of the Mathieu equation using Galerkin's method. Thus, the buckling problem can be solved with a Mathieu equation. The criterion equation of the buckling problem also has been obtained by discussing the eigenvalue relation of the coefficients 2 and r/ in the Mathieu equation. As an example, a thin plate simply supported at three edges is solved here. Its magnetic-elasticity dynamic buckling equation and the relation curves of the instability state with variations in some parameters are also shown in this paper. The conclusions show that the electrical magnetic forces may be controlled by changing the parameters of the current or the magnetic field so that the aim of controlling the deformation, stress, strain and stability of the current carrying plate is achieved.展开更多
Plate tectonics describes the horizontal motions of lithospheric plates,the Earths outer shell,and interactions among them across the Earths surface.Since the establishment of the theory of plate tectonics about half ...Plate tectonics describes the horizontal motions of lithospheric plates,the Earths outer shell,and interactions among them across the Earths surface.Since the establishment of the theory of plate tectonics about half a century ago,considerable debates have remained regarding the driving forces for plate motion.The early"Bottom up"view,i.e.,the convecting mantledriven mechanism,states that mantle plumes originating from the core-mantle boundary act at the base of plates,accelerating continental breakup and driving plate motion.Toward the present,however,the"Top down"idea is more widely accepted,according to which the negative buoyancy of oceanic plates is the dominant driving force for plate motion,and the subducting slabs control surface tectonics and mantle convection.In this regard,plate tectonics is also known as subduction tectonics."Top down"tectonics has received wide supports from numerous geological and geophysical observations.On the other hand,recent studies indicate that the acceleration/deceleration of individual plates over the million-year timescale may reflect the effects of mantle plumes.It is also suggested that surface uplift and subsidence within stable cratonic areas are correlated with plumerelated magmatic activities over the hundred-million-year timescale.On the global scale,the cyclical supercontinent assembly and breakup seem to be coupled with superplume activities during the past two billion years.These correlations over various spatial and temporal scales indicate the close relationship and intensive interactions between plate tectonics and plume tectonics throughout the history of the Earth and the considerable influence of plumes on plate motion.Indeed,we can acquire a comprehensive understanding of the driving forces for plate motion and operation mechanism of the Earth's dynamic system only through joint analyses and integrated studies on plate tectonics and plume tectonics.展开更多
The formula of the vibration response and power flow in beam-stiffened plate with force excitation applied on.the plate, have been obtained by using the Steepest Descent Integral method. The characteristics of the pow...The formula of the vibration response and power flow in beam-stiffened plate with force excitation applied on.the plate, have been obtained by using the Steepest Descent Integral method. The characteristics of the power flow have been studied through computer simulation.It is shown that the stiffener acts as an extra lineal excitation applied on the plate and changes the characteristics of the power flow of the infinite plate greatly The greater the stiffness and the smaller the distance between the exciting point and the stiffener is, the greater the induence is. Lastly, experiments have been carried out by using the dualaccelerometer measurement technique that based on cross spectrum, and the test data agree well with the theoretical results展开更多
文摘Plate motion representing a remarkable Earth process is widely attributed to several primary forces such as ridge push and slab pull. Recently, we have presented that the ocean water pressure against the wall of continents may generate enormous force on continents. Continents are physically fixed on the top of the lithosphere that has been already broken into individual plates, this attachment enables the force to be laterally transferred to the lithospheric plates. In this study, we combine the force and the existing plate driving forces (i.e., ridge push, slab pull, collisional, and shearing) to account for plate motion. We show that the modelled movements for the South American, African, North American, Eurasian, Australian, Pacific plates are well agreement with the observed movements in both speed and azimuth, with a Root Mean Square Error (RMSE) of the modelled speed against the observed speed of 0.91, 3.76, 2.77, 2.31, 7.43, and 1.95 mm/yr, respectively.
文摘In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.
基金Natural Science Research Project of Education Department of Shaanxi Province,China(No.08JK394).
文摘The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.
基金National Natural Science Foundation of China(No.50275128)Natural Science Foundation of Hebei Province,China(No.A2006000190).
文摘The magnetic-elasticity buckling problem of a current plate under the action of a mechanical load in a magnetic field was studied by using the Mathieu function. According to the magnetic-elasticity non-linear kinetic equation, physical equations, geometric equations, the expression for Lorenz force and the electrical dynamic equation, the magnetic-elasticity dynamic buckling equation is derived. The equation is changed into a standard form of the Mathieu equation using Galerkin's method. Thus, the buckling problem can be solved with a Mathieu equation. The criterion equation of the buckling problem also has been obtained by discussing the eigenvalue relation of the coefficients 2 and r/ in the Mathieu equation. As an example, a thin plate simply supported at three edges is solved here. Its magnetic-elasticity dynamic buckling equation and the relation curves of the instability state with variations in some parameters are also shown in this paper. The conclusions show that the electrical magnetic forces may be controlled by changing the parameters of the current or the magnetic field so that the aim of controlling the deformation, stress, strain and stability of the current carrying plate is achieved.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91855207 and 41688103)the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20070302)the independent project of the State Key Laboratory of the Lithospheric Evolution, IGGCAS (Grant No. SKLZ201704-11712180)
文摘Plate tectonics describes the horizontal motions of lithospheric plates,the Earths outer shell,and interactions among them across the Earths surface.Since the establishment of the theory of plate tectonics about half a century ago,considerable debates have remained regarding the driving forces for plate motion.The early"Bottom up"view,i.e.,the convecting mantledriven mechanism,states that mantle plumes originating from the core-mantle boundary act at the base of plates,accelerating continental breakup and driving plate motion.Toward the present,however,the"Top down"idea is more widely accepted,according to which the negative buoyancy of oceanic plates is the dominant driving force for plate motion,and the subducting slabs control surface tectonics and mantle convection.In this regard,plate tectonics is also known as subduction tectonics."Top down"tectonics has received wide supports from numerous geological and geophysical observations.On the other hand,recent studies indicate that the acceleration/deceleration of individual plates over the million-year timescale may reflect the effects of mantle plumes.It is also suggested that surface uplift and subsidence within stable cratonic areas are correlated with plumerelated magmatic activities over the hundred-million-year timescale.On the global scale,the cyclical supercontinent assembly and breakup seem to be coupled with superplume activities during the past two billion years.These correlations over various spatial and temporal scales indicate the close relationship and intensive interactions between plate tectonics and plume tectonics throughout the history of the Earth and the considerable influence of plumes on plate motion.Indeed,we can acquire a comprehensive understanding of the driving forces for plate motion and operation mechanism of the Earth's dynamic system only through joint analyses and integrated studies on plate tectonics and plume tectonics.
文摘The formula of the vibration response and power flow in beam-stiffened plate with force excitation applied on.the plate, have been obtained by using the Steepest Descent Integral method. The characteristics of the power flow have been studied through computer simulation.It is shown that the stiffener acts as an extra lineal excitation applied on the plate and changes the characteristics of the power flow of the infinite plate greatly The greater the stiffness and the smaller the distance between the exciting point and the stiffener is, the greater the induence is. Lastly, experiments have been carried out by using the dualaccelerometer measurement technique that based on cross spectrum, and the test data agree well with the theoretical results