For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flow...This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.展开更多
In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are a...In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions.We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions.Moreover,we derive L∞-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions.Finally,some numerical examples are given to demonstrate the theoretical results.展开更多
In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element method...In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods.The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k≥0).A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained.Finally,we present some numerical examples which confirm our theoretical results.展开更多
In this paper,we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control.The state and co...In this paper,we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control.The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions.We derive some superconvergence properties for the control variable and the state variables.Moreover,we derive L∞-and H−1-error estimates both for the control variable and the state variables.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap- proximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous fini...In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap- proximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time dis- cretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We de- rive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori L2(O, T; L2(Ω)) error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest or...In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive some superconvergence results for the control variable. Moreover, we derive L^(∞)-error estimates both for the control variable and the state variables. Finally, anumerical example is given to demonstrate the theoretical results.展开更多
In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables a...In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element,and the control vari-able is approximated by piecewise constant functions.The time discretization of the state and co-state are based on finite difference methods.First,we derive a priori error estimates for the control variable,the state variables and the adjoint state variables.Second,by use of energy approach,we derive a posteriori error estimates for optimal control problems,assuming that only the underlying mesh is static.A numerical example is presented to verify the theoretical results on a priori error estimates.展开更多
In this paper, several mathematical models for the large scale structures in some special kinds of mixing layers, which might be practically useful for enhancing the mixing, are proposed. First, the linear growth rate...In this paper, several mathematical models for the large scale structures in some special kinds of mixing layers, which might be practically useful for enhancing the mixing, are proposed. First, the linear growth rate of the large scale structures in the mixing layers was calculated. Then, using the much improved weakly non-linear theory, combined with the energy method, the non-linear evolution of large scale structures in two special mixing layer configurations is calculated. One of the mixing lavers has equal magnitudes of the upstream velocity vectors, while the angles between the velocity vectors and the trailing edge were pi /2 - phi and pi /2 + phi, respectively. The other mixing layer was generated by a splitter-plate with a 45-degree-sweep trailing edge.展开更多
This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state...This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L∞--estimates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.展开更多
In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by ...In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.展开更多
In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mix...We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.展开更多
In this paper,we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic equations.The state and co-state are approximated by the lowest order Raviart-...In this paper,we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic equations.The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive L2 and H−1-error estimates both for the control variable and the state variables.Finally,a numerical example is given to demonstrate the theoretical results.展开更多
In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the orde...In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.展开更多
In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k...In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.展开更多
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘This paper investigates the use of the method of inequalities (MoI) to design output-feedback compensators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Consequently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a system can be described as a conditionally linear system. The sensitivity is measured using the maximum transient energy growth, which is widely used in the fluid dynamics community. The paper considers two approaches. In the first approach, the MoI is used to design low-order proportional and proportional-integral (PI) controllers. In the second one, the MoI is combined with McFarlane and Glover's H∞ loop-shaping design procedure in a mixed-optimization approach.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)the Foundation for High-level Talent Faculty of Guangdong Provincial University,and Hunan Provincial Innovation Foundation for Postgraduate CX2010B247.
文摘In this paper,we investigate the superconvergence property and the L∞-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint.The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions.We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions.Moreover,we derive L∞-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions.Finally,some numerical examples are given to demonstrate the theoretical results.
基金supported by the Foundation for Talent Introduction of Guangdong Provincial Universities and CollegesPearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods.The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k≥0).A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained.Finally,we present some numerical examples which confirm our theoretical results.
基金supported by National Science Foundation of China(11271145)Foundation for Talent Introduction of Guangdong Provincial University,Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)+1 种基金the Project of Department of Education of Guangdong Province(2012KJCX0036)supported by China Postdoctoral Science Foundation funded project(2013M542188).
文摘In this paper,we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control.The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions.We derive some superconvergence properties for the control variable and the state variables.Moreover,we derive L∞-and H−1-error estimates both for the control variable and the state variables.Finally,a numerical example is given to demonstrate the theoretical results.
基金Acknowledgments. The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions on an earlier version of this paper. The work of T. Hou was supported by China Postdoctoral Science Foundation funded project (2013M542188). The work of Y. Chen was supported by National Science Foundation of China (91430104, 11271145), and Specialized Research Fund for the Doctoral Program of Higher Education (20114407110009).
文摘In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap- proximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time dis- cretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We de- rive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori L2(O, T; L2(Ω)) error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
文摘In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive some superconvergence results for the control variable. Moreover, we derive L^(∞)-error estimates both for the control variable and the state variables. Finally, anumerical example is given to demonstrate the theoretical results.
基金This work was supported by National Natural Science Foundation of China(11601014,11626037,11526036)China Postdoctoral Science Foundation(2016M 601359)+4 种基金Scientific and Technological Developing Scheme of Jilin Province(20160520108 JH,20170101037JC)Science and Technology Research Project of Jilin Provincial Depart-ment of Education(201646)Special Funding for Promotion of Young Teachers of Beihua University,Natural Science Foundation of Hunan Province(14JJ3135)the Youth Project of Hunan Provincial Education Department(15B096)the construct program of the key discipline in Hunan University of Science and Engineering.
文摘In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element,and the control vari-able is approximated by piecewise constant functions.The time discretization of the state and co-state are based on finite difference methods.First,we derive a priori error estimates for the control variable,the state variables and the adjoint state variables.Second,by use of energy approach,we derive a posteriori error estimates for optimal control problems,assuming that only the underlying mesh is static.A numerical example is presented to verify the theoretical results on a priori error estimates.
基金The project supported by the National Natural Science Foundation of China (19642001) and Deutsche Forschungsgemeinschaft (DFG)
文摘In this paper, several mathematical models for the large scale structures in some special kinds of mixing layers, which might be practically useful for enhancing the mixing, are proposed. First, the linear growth rate of the large scale structures in the mixing layers was calculated. Then, using the much improved weakly non-linear theory, combined with the energy method, the non-linear evolution of large scale structures in two special mixing layer configurations is calculated. One of the mixing lavers has equal magnitudes of the upstream velocity vectors, while the angles between the velocity vectors and the trailing edge were pi /2 - phi and pi /2 + phi, respectively. The other mixing layer was generated by a splitter-plate with a 45-degree-sweep trailing edge.
基金supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China under Grant No.10971074China Postdoctoral Science Foundation under Grant No.2011M500968
文摘This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L∞--estimates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.
基金supported in part by Hunan Education Department Key Project 10A117 and Hunan Provincial Innovation Foundation for Postgraduate CX2010B247supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)and National Science Foundation of China(10971074)+3 种基金supported in part by the NSFC Key Project(11031006)Hunan Provincial NSF Project(10JJ7001)the NSFC for Distinguished Young Scholars(10625106)National Basic Research Program of China under the Grant 2005 CB321701.
文摘In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
基金This work is supported by National Science Foundation of China,Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘In this paper,we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems.The state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-nite element spaces and the control variable is approximated by piecewise constant functions.We derive L^(2) and L^(∞)-error estimates for the control variable.Moreover,using a recovery operator,we also derive some superconvergence results for the control variable.Finally,a numerical example is given to demonstrate the theoretical results.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China 10971074+1 种基金the National Basic Research Program under the Grant 2005CB321703Hunan Provincial Innovation Foundation For Postgraduate CX2009B119.
文摘We investigate the superconvergence properties of the constrained quadratic elliptic optimal control problem which is solved by using rectangular mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element spaces to approximate the state and co-state variables and use piecewise constant functions to approximate the control variable.We obtain the superconvergence of O(h^(1+s))(0<s≤1)for the control variable.Finally,we present two numerical examples to confirm our superconvergence results.
基金supported by National Natural Science Foundation of China(Grant No.11526036)Scientific and Technological Developing Scheme of Jilin Province(Grant No.20160520108JH).
文摘In this paper,we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic equations.The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive L2 and H−1-error estimates both for the control variable and the state variables.Finally,a numerical example is given to demonstrate the theoretical results.
基金supported by Guangdong Provincial‘Zhujiang Scholar Award Project’National Science Foundation of China 10671163+2 种基金the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department 06A069Hunan Provincial Innovation Foundation for Postgraduate S2008yjscx04。
文摘In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.
基金supported by National Natural Science Foundation of China(Grant No.10971074)Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20114407110009)
文摘In this paper,we investigate the superconvergence property of the numerical solution to a quadratic elliptic control problem by using mixed finite element methods.The state and co-state are approximated by the order k=1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We prove the superconvergence error estimate of h3/2 in L2-norm between the approximated solution and the average L2 projection of the control.Moreover,by the postprocessing technique,a quadratic superconvergence result of the control is derived.