Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simul...Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simulation is for the zonal mean Hadley circulation over East Asia (from 95°E to 122.5°E), another over India (from 70°E to 85°E). With the NCEP/ NCAR re-analysis data re—processed by Chinese Academy of Science in Beijing, the former simulation displays a dominant anti—Hadley circulation pattern over East Asia at 1200 UTC May 1, 1994. The simulated circulation pattern is consistent well enough with the circulation pattern plotted directly from the data for lack of the radiation information at each level. Although the simulation over India is not as good as that over East Asia, a dominant Hadley circulation pattern is obvious as data show. Further analysis shows that the defective simulation over India is due to the presence of statically unstable condition at some grid points in the lower troposphere. This circumstance slightly violates the hydrodynamic stability criterion required by the elliptic diagnostic equation for the forced circulation. Since the simulations are reliable enough compared with the given data, the linear equation facilitates a systematic assessment of relative importance of each internally forcing process. The assessment shows that among the internal processes, the horizontal temperature advections account obviously for the Hadley (anti—Hadley) circulation over India (East Asia) at 1200 UTC May 1, 1994 in addition to the process associated with the latent heat releasing. The calculation of latent heat energy is a little bit unreliable due to the unclear cloud physics in the convection processes and the less accurate humidity data. These preliminary results are consistent with the results of previous studies which show that the feature of the seasonal warming in the upper troposphere and the corresponding processes are part of key processes closely related to the evolution of the summer monsoon over East Asia and India. Key words Monsoon circulation - Hadley circulation - Forced meridional circulation This work was supported by the “ National key programme of China for developing basic science” G 1998040900 part 1, NSFC 49675264 and NSFC 49875021.展开更多
To identify the effect of solvents and anthracene on the purification of carbazole,the solvent crystallization of carbazole was investigated with xylene,chlorobenzene and tetrachloroethylene(TCE)as solvents under two ...To identify the effect of solvents and anthracene on the purification of carbazole,the solvent crystallization of carbazole was investigated with xylene,chlorobenzene and tetrachloroethylene(TCE)as solvents under two forced circulation cooling(FCC)modes.The co-crystalline experimental data were obtained from runs carried out at different anthracene levels between 1%(mass)and 10%(mass).The results showed that a uniform flake carbazole crystal obtained when using xylene and chlorobenzene under the FCC-1 mode with gradual cooling rate.Nevertheless,fine flake crystals grown under shock cooling of FCC-2 mode.It is beneficial to improving the purity of carbazole with chlorobenzene as solvent under cooling mode of FCC-1.Anthracene could promote the growth of carbazole in solution,and it has a significant influence on the purification of carbazole.展开更多
A linear partial differential equation is derived in cylindrical-isobaric coordinates on the earth for the diagnostic study of the tangentially-averaged radial-vertical circulation within translating vortices. In the ...A linear partial differential equation is derived in cylindrical-isobaric coordinates on the earth for the diagnostic study of the tangentially-averaged radial-vertical circulation within translating vortices. In the hydrodynamic stable atmosphere, the circulation will be forced through many dynamic and thermodynamic processes. These processes are associated with frictional torque, inertial torque, the horizontal and vertical divergence of eddy angular momentum, diabatic heating, adiabatic heating, and eddy temperature advection. For a given forcing, the intensity of circulation will increase with the decrease of static, inertial, and baroclinic stabilities. This paper also presents an explanation on the data interpolation from the latitude-longitude grid to the vortex volume gird and a brief discussion on the forcing processes.展开更多
Utilizing Eliassen′s concepts, the forcing of the isentropic azimuthally-averaged mass-weighted radial-vertical circulation by diabatic heating and torques within an extratropical cyclone and a typhoon was studied th...Utilizing Eliassen′s concepts, the forcing of the isentropic azimuthally-averaged mass-weighted radial-vertical circulation by diabatic heating and torques within an extratropical cyclone and a typhoon was studied through numerical simulations based on the linear diagnostic equation derived previously. The structure of the forcing associated with diabatic heating and torques was determined from quasi-Lagrangian diagnostic analyses of actual case studies. The two cyclones studied were the Ohio extratropical cyclone of 25-27 January 1978 and typhoon Nancy of 18-23 September 1979. The Ohio cyclone, which formed over the Gulf Coast and moved through Ohio and eastern Michigan, was one of the most intense storms with blizzard conditions to ever occur in this region. Typhoon Nancy which occurred over the South China Sea during the FGGE year was selected since relatively high quality assimilated data were available. Within the Ohio cyclone, the dominant internal processes forcing the mean circulation with embedded relatively strong hydrodynamic stability were the pressure torque associated with baroclinic (asymmetric) structure and the horizontal eddy angular momentum transport associated with the typical S-shaped thermal and wind structures of self-development. Within typhoon Nancy, the dominant internal process forcing the mean circulation with embedded weak hydrodynamic stability was the latent heat release. This analysis shows that the simulated azimuthally-averaged mass-weighted radial motions within these two cyclones agree quite well with the “observed”azimuthally-averaged mass-weighted radial motions. This isentropic numerical study also provides insight into the relatively important internal forcing processes and the trade off between forcing and stability within both extratropical and tropical cyclones.展开更多
お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic ...お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.展开更多
The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed ...The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed to analyze the migration of the temperature and velocity front under the flow and thermal breakthrough.The results indicated that thermal breakthrough began after simulation running 2.5 min and was completely formed after 12 min.The inlet water,which directly entered the production well without heat exchange with the aquifer,accounted for 12.8%.When the porosity of the backfill material decreased from 0.35 to 0,the coefficient of per-formance(COP)of the heat pump unit increased by 1.6%on average,and the thermal breakthrough strength decreased by an average of 45.3%within 25 min.Where seepage velocity near the well wall was greater than 1×10^(−3) m·s^(−1),faster velocity front migration was observed,while the migration advantage of the temperature front was more prominent outside of this region.Through quantitative analysis of flow and thermal breakthrough,temperature and velocity front migration,and COP change of heat pump unit,theoretical suggestions were pro-vided for the thermal transfer mechanism near the thermal well wall.The extended research in this study can be applied to the design and optimization of forced external circulation standing column well system.展开更多
A non-dimensional secondary circulation equation for typhoons has been derived and then 11-yr com- positing typhoon data were used to estimate the thermally forced secondary circulation.The main results have been obta...A non-dimensional secondary circulation equation for typhoons has been derived and then 11-yr com- positing typhoon data were used to estimate the thermally forced secondary circulation.The main results have been obtained as follows: (1)The diabatic heating and Cu vertical heat mixing are major thermal forcing factors.They have the same magnitude of order.(2)The effects of eddy flux and Cu horizontal mixing of heat are of minor im- portance.(3)Ekman pumping and Cu vertical heat mixing cooperatively work.This feedback process is favorable for the enhancement of the secondary circulation of typhoons.展开更多
We havc found that tide-forming forces have an important triggering effect on the abnormal changes in the atmospheric mction. They are different from classical tide-forming forces. The atmospheric tides in the troposp...We havc found that tide-forming forces have an important triggering effect on the abnormal changes in the atmospheric mction. They are different from classical tide-forming forces. The atmospheric tides in the troposphere dcpend primarily upon the tide-forming forces at the time of astronomical singularities. There are three resonance areas, i. c., the areas close to 54.7°and 90°from the sublunar point at the time of astronomical singularities, and the ≤2°area of the sublunar point. The superposition of the resonance arcas of sevcral astronomical singularities may excite anomalies of the atmospheric circulation, including the adjustment and continual anomalies of the extra-long waves, the subtropical high and the blocking situation. It is hopcd that our research can make contributions to thc improvement of medium-range, monthly and seasonai numerical predictions.展开更多
基金This work was supported by the" National key programme of China for developing basic science" !G 1998040900 part 1, NSFC 496752
文摘Two numerical simulations of forced local Hadley circulation are carried out based on a linear diagnostic equation to provide an insight into the mechanisms of monsoon evolution in different monsoon regions. One simulation is for the zonal mean Hadley circulation over East Asia (from 95°E to 122.5°E), another over India (from 70°E to 85°E). With the NCEP/ NCAR re-analysis data re—processed by Chinese Academy of Science in Beijing, the former simulation displays a dominant anti—Hadley circulation pattern over East Asia at 1200 UTC May 1, 1994. The simulated circulation pattern is consistent well enough with the circulation pattern plotted directly from the data for lack of the radiation information at each level. Although the simulation over India is not as good as that over East Asia, a dominant Hadley circulation pattern is obvious as data show. Further analysis shows that the defective simulation over India is due to the presence of statically unstable condition at some grid points in the lower troposphere. This circumstance slightly violates the hydrodynamic stability criterion required by the elliptic diagnostic equation for the forced circulation. Since the simulations are reliable enough compared with the given data, the linear equation facilitates a systematic assessment of relative importance of each internally forcing process. The assessment shows that among the internal processes, the horizontal temperature advections account obviously for the Hadley (anti—Hadley) circulation over India (East Asia) at 1200 UTC May 1, 1994 in addition to the process associated with the latent heat releasing. The calculation of latent heat energy is a little bit unreliable due to the unclear cloud physics in the convection processes and the less accurate humidity data. These preliminary results are consistent with the results of previous studies which show that the feature of the seasonal warming in the upper troposphere and the corresponding processes are part of key processes closely related to the evolution of the summer monsoon over East Asia and India. Key words Monsoon circulation - Hadley circulation - Forced meridional circulation This work was supported by the “ National key programme of China for developing basic science” G 1998040900 part 1, NSFC 49675264 and NSFC 49875021.
基金supported by the National Natural Science Foundation of China(21776192,22038008)。
文摘To identify the effect of solvents and anthracene on the purification of carbazole,the solvent crystallization of carbazole was investigated with xylene,chlorobenzene and tetrachloroethylene(TCE)as solvents under two forced circulation cooling(FCC)modes.The co-crystalline experimental data were obtained from runs carried out at different anthracene levels between 1%(mass)and 10%(mass).The results showed that a uniform flake carbazole crystal obtained when using xylene and chlorobenzene under the FCC-1 mode with gradual cooling rate.Nevertheless,fine flake crystals grown under shock cooling of FCC-2 mode.It is beneficial to improving the purity of carbazole with chlorobenzene as solvent under cooling mode of FCC-1.Anthracene could promote the growth of carbazole in solution,and it has a significant influence on the purification of carbazole.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 40175018 and 49875021.
文摘A linear partial differential equation is derived in cylindrical-isobaric coordinates on the earth for the diagnostic study of the tangentially-averaged radial-vertical circulation within translating vortices. In the hydrodynamic stable atmosphere, the circulation will be forced through many dynamic and thermodynamic processes. These processes are associated with frictional torque, inertial torque, the horizontal and vertical divergence of eddy angular momentum, diabatic heating, adiabatic heating, and eddy temperature advection. For a given forcing, the intensity of circulation will increase with the decrease of static, inertial, and baroclinic stabilities. This paper also presents an explanation on the data interpolation from the latitude-longitude grid to the vortex volume gird and a brief discussion on the forcing processes.
文摘Utilizing Eliassen′s concepts, the forcing of the isentropic azimuthally-averaged mass-weighted radial-vertical circulation by diabatic heating and torques within an extratropical cyclone and a typhoon was studied through numerical simulations based on the linear diagnostic equation derived previously. The structure of the forcing associated with diabatic heating and torques was determined from quasi-Lagrangian diagnostic analyses of actual case studies. The two cyclones studied were the Ohio extratropical cyclone of 25-27 January 1978 and typhoon Nancy of 18-23 September 1979. The Ohio cyclone, which formed over the Gulf Coast and moved through Ohio and eastern Michigan, was one of the most intense storms with blizzard conditions to ever occur in this region. Typhoon Nancy which occurred over the South China Sea during the FGGE year was selected since relatively high quality assimilated data were available. Within the Ohio cyclone, the dominant internal processes forcing the mean circulation with embedded relatively strong hydrodynamic stability were the pressure torque associated with baroclinic (asymmetric) structure and the horizontal eddy angular momentum transport associated with the typical S-shaped thermal and wind structures of self-development. Within typhoon Nancy, the dominant internal process forcing the mean circulation with embedded weak hydrodynamic stability was the latent heat release. This analysis shows that the simulated azimuthally-averaged mass-weighted radial motions within these two cyclones agree quite well with the “observed”azimuthally-averaged mass-weighted radial motions. This isentropic numerical study also provides insight into the relatively important internal forcing processes and the trade off between forcing and stability within both extratropical and tropical cyclones.
文摘お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.
基金This work was supported by the National Natural Science Foundation of China(41002085,41602278)China Postdoctoral Science Founda-tion(2016M601129)North China University of Technology Programs(18XN154-006,110052972027-031).
文摘The flow and thermal breakthrough phenomenon in a forced external circulation standing column well(FECSCW)directly affects heat transfer efficiency and load-carrying capacity.A numerical model for FECSCW is developed to analyze the migration of the temperature and velocity front under the flow and thermal breakthrough.The results indicated that thermal breakthrough began after simulation running 2.5 min and was completely formed after 12 min.The inlet water,which directly entered the production well without heat exchange with the aquifer,accounted for 12.8%.When the porosity of the backfill material decreased from 0.35 to 0,the coefficient of per-formance(COP)of the heat pump unit increased by 1.6%on average,and the thermal breakthrough strength decreased by an average of 45.3%within 25 min.Where seepage velocity near the well wall was greater than 1×10^(−3) m·s^(−1),faster velocity front migration was observed,while the migration advantage of the temperature front was more prominent outside of this region.Through quantitative analysis of flow and thermal breakthrough,temperature and velocity front migration,and COP change of heat pump unit,theoretical suggestions were pro-vided for the thermal transfer mechanism near the thermal well wall.The extended research in this study can be applied to the design and optimization of forced external circulation standing column well system.
文摘A non-dimensional secondary circulation equation for typhoons has been derived and then 11-yr com- positing typhoon data were used to estimate the thermally forced secondary circulation.The main results have been obtained as follows: (1)The diabatic heating and Cu vertical heat mixing are major thermal forcing factors.They have the same magnitude of order.(2)The effects of eddy flux and Cu horizontal mixing of heat are of minor im- portance.(3)Ekman pumping and Cu vertical heat mixing cooperatively work.This feedback process is favorable for the enhancement of the secondary circulation of typhoons.
文摘We havc found that tide-forming forces have an important triggering effect on the abnormal changes in the atmospheric mction. They are different from classical tide-forming forces. The atmospheric tides in the troposphere dcpend primarily upon the tide-forming forces at the time of astronomical singularities. There are three resonance areas, i. c., the areas close to 54.7°and 90°from the sublunar point at the time of astronomical singularities, and the ≤2°area of the sublunar point. The superposition of the resonance arcas of sevcral astronomical singularities may excite anomalies of the atmospheric circulation, including the adjustment and continual anomalies of the extra-long waves, the subtropical high and the blocking situation. It is hopcd that our research can make contributions to thc improvement of medium-range, monthly and seasonai numerical predictions.