The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
Nanoqiter flowrate measurements in micro-tubes with displacement method were performed and the effect of capillarity force on the accuracy was investigated through lab experiments and theoretical analysis in this arti...Nanoqiter flowrate measurements in micro-tubes with displacement method were performed and the effect of capillarity force on the accuracy was investigated through lab experiments and theoretical analysis in this article. The experiments were conducted under the pressure drops ranging from 1 kPa to 10 kPa in a circular pipe with a diameter of 50 pm, to give the pressure-flowrate (P-Q) relation and verify the applicability of the classical Hagen-Poiseuille (HP) formula. The experimental results showed that there existed a discrepancy between the experimental data and the theoretical values predicted by the HP formula if the capillary effect was not considered, which exceeded obviously the limit of the system error. And hence a modified formula for the relation, taking the capillary effect into account, was presented through theoretical deduction, and after the HP formula had been modified the error was proved to be less than 3%, which was permitted in comparison with the system error. It was also concluded that only by eliminating the effect of the capillary force in experiments could the original HP formula be employed to predict the pressure-flowrate relation in the Hagen-Poiseuille flow in the micro-tube.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
基金supported by the National Natural Science Foundation of China (Grant No. 10272107)Major Innovation Project of Chinese Academy of Sciences(Grant No. KJCX2-SW-L2).
文摘Nanoqiter flowrate measurements in micro-tubes with displacement method were performed and the effect of capillarity force on the accuracy was investigated through lab experiments and theoretical analysis in this article. The experiments were conducted under the pressure drops ranging from 1 kPa to 10 kPa in a circular pipe with a diameter of 50 pm, to give the pressure-flowrate (P-Q) relation and verify the applicability of the classical Hagen-Poiseuille (HP) formula. The experimental results showed that there existed a discrepancy between the experimental data and the theoretical values predicted by the HP formula if the capillary effect was not considered, which exceeded obviously the limit of the system error. And hence a modified formula for the relation, taking the capillary effect into account, was presented through theoretical deduction, and after the HP formula had been modified the error was proved to be less than 3%, which was permitted in comparison with the system error. It was also concluded that only by eliminating the effect of the capillary force in experiments could the original HP formula be employed to predict the pressure-flowrate relation in the Hagen-Poiseuille flow in the micro-tube.