期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Simulation of the Navier-Stokes Equations for Laminar and Turbulent Flow around a Heated Square Cylinder with Forced Convection 被引量:2
1
作者 Romulo D.C.Santos Sílvio M.A.Gama Ramiro G.R.Camacho 《Applied Mathematics》 2018年第3期291-312,共22页
Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physica... Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physical Model (VPM) to investigate incompressible two-dimensional Newtonian flow around a heated square cylinder at constant temperature on its surface with forced convection and turbulence. The VPM model dynamically evaluates the force that the fluid exerts on the immersed surface and the thermal exchange between both in the Reynolds numbers (Re) window 40 ≤ Re ≤ 5×103 . For simulations of turbulence the Smagorinsky and Spalart-Allmaras models are used. The first model uses the Large Eddy Simulation (LES) methodology and is based on the local equilibrium hypothesis for small scales associated with the Boussinesq hypothesis, such that the energy injected into the spectrum of the turbulence balances the energy dissipated by convective effects. The second model uses the concept Unsteady Reynolds Averaged Navier-Stokes Equations (URANS), with only one transport equation for turbulent viscosity, being calibrated in pressure gradient layers. The goal of this work is to analyse the combination of the heat-transfer phenomena with the turbulence for the thermo-fluid-structure interaction in a square cylinder. For this, it was developed a C/C++ code that requires low computational costs in regards to memory and computer facilities. It is observed that, with the increase of the Reynolds number, an increase of the drag coefficient occurs, as well as reinforces the influence of the pressure distribution downstream of the cylinder, which is strongly influenced by the formation and detachment of vortices on the upper and lower sides of the square cylinder. 展开更多
关键词 Immersed Boundary Method Virtual Physical Model heated Square Cylinder forced convection Turbulence Models
下载PDF
Diagnosis of the Forcing of Inertial-gravity Waves in a Severe Convection System 被引量:2
2
作者 Lingkun RAN Changsheng CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1271-1284,共14页
The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the l... The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the lhs, and forcing involving three terms—linear and nonlinear terms, and diabatic heating—on the rhs. The equation was applied to a case of severe convection that occurred in East China. The calculation with simulation data showed that the diabatic forcing and linear and nonlinear forcing presented large magnitude at different altitudes in the severe convection region. Further analysis revealed the diabatic forcing due to condensational latent heating had an important influence on the generation of gravity waves in the middle and lower levels. The linear forcing resulting from the Laplacian of potential-temperature linear forcing was dominant in the middle and upper levels. The nonlinear forcing was determined by the Laplacian of potential-temperature nonlinear forcing. Therefore, the forcing of gravity waves was closely associated with the thermodynamic processes in the severe convection case. The reason may be that, besides the vertical component of pressure gradient force, the vertical oscillation of atmospheric particles was dominated by the buoyancy for inertial gravity waves. The latent heating and potential-temperature linear and nonlinear forcing played an important role in the buoyancy tendency. Consequently, these thermodynamic elements influenced the evolution of inertial-gravity waves. 展开更多
关键词 gravity convection forcing mesoscale vorticity perturbation latent Laplacian divergence heating
下载PDF
Performance index improvement of a double-pipe cooler with MgO/water-ethylene glycol (50:50) nano-suspension 被引量:1
3
作者 H.Arya M.M.Sarafraz +1 位作者 O.Pourmehran M.Arjomandi 《Propulsion and Power Research》 SCIE 2020年第1期75-86,共12页
A series of tests was conducted to unlock the potential application of MgO/water-EG(ethylene glycol)nanofluids(NF)in a double-pipe heat exchanger(HEX).The overall heat transfer coefficient(HTC),the inlet temperature o... A series of tests was conducted to unlock the potential application of MgO/water-EG(ethylene glycol)nanofluids(NF)in a double-pipe heat exchanger(HEX).The overall heat transfer coefficient(HTC),the inlet temperature of the working fluid,the fluid pressure drop(FPD),friction factor(FF)and the hydraulic performance index of the NF within the HEX were experimentally measured.Fouling of nanoparticles(NPs)within the Hex was also studied and modelled using asymptotic particulate fouling model.Results showed that MgO NPs can enhance the HTC by 39%at Re=10500 and wt.%=0.3 in the turbulent regime.Also,the presence of MgO NPs augmented the FF and the FPD values.The former was enhanced 33.8%,while the latter was augmented by 37%both at wt.%=0.3 and at Reynolds number=10500.Results also revealed that the formation of porous particulate fouling layer on the internal wall of the inner tube creates a fouling thermal resistance which changes asymptotically with time.Overall,MgO/water-ethylene glycol shows a great potential to be used as a coolant within a HEX. 展开更多
关键词 forced convective heat transfer Particulate fouling heat exchanger FOULING NANOFLUID
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部