In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing ta...In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.展开更多
Respiratory diseases, especially asthma, are common in children. While spirometry contributes to asthma diagnosis and management in older children, it has a limited role in younger children whom are often unable to pe...Respiratory diseases, especially asthma, are common in children. While spirometry contributes to asthma diagnosis and management in older children, it has a limited role in younger children whom are often unable to perform forced expiratory manoeuvre. The development of novel diagnostic methods which require minimal effort, such as forced oscillation technique(FOT) is, therefore, a welcome and promising addition. FOT involves applying external, small amplitude oscillations to the respiratory system during tidal breathing. Therefore, it requires minimal effort and cooperation. The FOT has the potential to facilitate asthma diagnosis and management in preschool children by faciliting the objective measurement of baseline lung function and airway reactivity in children unable to successfully perform spirometry. Traditionally the use of FOT was limited to specialised centres. However, the availability of commercial equipment resulted in its use both in research and in clinical practice. In this article, we review the available literature on the use of FOT in childhood asthma. The technical aspects of FOT are described followed by a discussion of its practical aspects in the clinical field including the measurement of baseline lung function and associated reference ranges, bronchodilator responsiveness and bronchial hyperresponsiveness. We also highlight the difficulties and limitations that might be encountered and future research directions.展开更多
The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the ...The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the breakdown of concentrated vortices, and large reversed-flow-regions which originally appear at the upper surface of the fixed wing at high angles of attack would be suppressed to some extent, depending on the oscillation frequencies. As a consequence, the influences can be optimized by selecting proper oscillation frequencies.展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodyn...A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodynamics and pipe deformation were accomplished by ANSYS MFX solution strat- egy designed for fluid-structure interaction (FSI) problem with well-performed LES model. The configuration of structured mesh, multi-domain design, different mesh stiffness admeasured by User Fortran ensured that the numerical task was competent to deal with large deformation related to this case. The introduction of instantaneous amplitude definition and modeless component decom- position method (Chen and Kim, 2008) was helpful to reveal much more information from modal analysis. Most results from numerical simulation are generally consistent with those from model test (Choi and Hong, 2000) via the comparison between them. As supplementary to model test, visualization of the vortex wake was also provided. It has been proved that the forced oscillation doesn't only excite a complicated dumbbell-like wake pattern around the outer thimble, but also results in inner flow inside the PVC pipe. The velocity of the inner flow increases with the frequency of forced oscillation.展开更多
A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibra- tions (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vi...A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibra- tions (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of selfexcited oscillations and the force coemcients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m^# and material damping ratio of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. In- stances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Wifliamson' s group are in rather good agreement.展开更多
This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two group...This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two groups of 'Figure of Eight' oscillation patterns are under investigation at Reynolds number Re = 24000. The ' Figure of Eight' pattern in each group is with identical shape but oppusite orbital directions. The numerical results on hydrodynamic forces, higher order force components, and vortex shedding modes are extensively studied and compared with the measured experimental data. It is found that the fluid force in phase with the velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude due to the opposite orbital direction. Higher order force components in cross-flow direction are found to occur at odd nmnber times of the oscillating frequency, while even nmbers dominate the higher order force components in in-llne direction. The 2C and 2T vortex shedding modes are well reproduced due to the opposite orbital direction effect. Comparisons between numerical and experimental results indicate that the present numerical model could be a rational tool for the identification of hydrodynamic coefficients which are normally applied in empirical models to predict the vortex-induced vibrations of slender marine structures.展开更多
The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="...The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em></span>), with the commutation relation <img src="Edit_28f5b839-7de4-41e5-9ed8-69dc1bf72c2c.bmp" alt="" />, and using a Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s like equation on these variable, and associating a linear operator to a constant of motion <em>K</em> (<em>x, v, t</em>) of the classical system, The comparison with the quantization in the space (<em>x, p</em>) is done with the usual Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s equation for the Hamiltonian <em>H</em><span style="white-space:normal;">(</span><em style="white-space:normal;">x, p, t</em><span style="white-space:normal;">)</span>, and with the commutation relation <img src="Edit_cca7e318-5b35-4c55-8f09-6089970ce9a2.bmp" alt="" />. It is found that for the non-resonant case, both forms of quantization bring about the same result. However, for the resonant case, both forms of quantization are different, and the probability for the system to be in the exited state for the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization has fewer oscillations than the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, the average energy of the system is higher in (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, and the Boltzmann-Shannon entropy on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization is higher than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization.展开更多
With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's se...With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.展开更多
The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced ...The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations have caught many researchers’ attentions.Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have a negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system reliability and dynamic properties, it is important to first distinguish forced oscillations from free oscillations and then locate the sources of forced oscillations in a timely manner. The negative impact of forced oscillation can be mitigated when they are detected and located. This paper provides an overview of the analysis technique of forced oscillations in power systems. In addition, some future opportunities are discussed in forced oscillation studies.展开更多
With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interl...With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interline power flow controller (IPFC) is used as a power suppression carrier and its mechanism is analyzed using the linearized state-space method to improve the system damping ratio. It is shown that although the IPFC can suppress forced oscillation with well-designed parameters, its capability of improving the system damping ratio is limited. Thus, combined with the repetitive control method, an additional repetitive controller (ARC) is proposed to further dampen the forced power oscillation. The ARC control scheme is characterized by outstanding tracking performance to a system steady reference value, and the main IPFC controller with the ARC can provide higher damping, and further reduce the amplitude of oscillations to zero compared with a supplementary damping controller (SDC). Simulation results show that the IPFC with an ARC can not only greatly reduce the oscillation amplitude, but also actively output the compensation power according to the reference value of the ARC tracking system.展开更多
In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the rippl...In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the ripple in general is very small, its formation is due to the instability of the laminar flow or the evolution of the small-scale coherent structures in the sublayer adjacent to the wall of the open channel. When the shear stresses caused by the disturbing waves or the coherent structure near the bed surface boundary and the water flow itself are greater than the shields stresses, responses on the bed surface appear and the sand ripple forms. If the frequency of the shear stress caused by the disturbance is close to the natural frequency of the sand grains that produced resonance, such a phenomenon is called the 'detection property' of the sediment. It is at this point that the maximum resonance appears and the sand ripple develops rapidly.展开更多
It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally pe...It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.展开更多
Large interconnected power systems are usually subjected to natural oscillation(NO)and forced oscillation(FO).NO occurs due to system transient response and is characterized by several oscillation modes,while FO occur...Large interconnected power systems are usually subjected to natural oscillation(NO)and forced oscillation(FO).NO occurs due to system transient response and is characterized by several oscillation modes,while FO occurs due to external perturbations driving generation sources.Compared to NO,FO is considered a more severe threat to the safe and reliable operation of power systems.Therefore,it is important to locate the source of FO so corrective actions can be taken to ensure stable power system operation.In this paper,a novel approach based on two-step signal processing is proposed to characterize FO in terms of its frequency components,duration,nature,and the location of the source.Data recorded by the Phasor Measurement Units(PMUs)in a Wide Area Monitoring System(WAMS)is utilized for analysis.As PMU data usually contains white noise and appears as multi-frequency oscillatory signal,the first step is to de-noise the raw PMU data by decomposing it into a series of intrinsic mode functions(IMF)using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(ICEEMDAN)technique.The most appropriate IMF containing the vital information is selected using the correlation technique.The second step involves various signal processing and statistical analysis tools such as segmented Power Spectrum Density(PSD),excess kurtosis,cross PSD etc.to achieve the desired objectives.The analysis performed on the simulated two-area four-machine system,reduced WECC-179 bus 29 machine system,and the real-time power system PMU data set from ISO New England,demonstrates the accuracy of the proposed method.The proposed approach is independent of complex network topologies and their characteristics,and is also robust against measurement noise usually contained in PMU data.展开更多
The Reynolds effect and mass-damping effect on the peak amplitude of a freely vibrating cylinder is studied by using forced oscillating data from Gopalkrishnan' s research in 1993, in which all experimental cases wer...The Reynolds effect and mass-damping effect on the peak amplitude of a freely vibrating cylinder is studied by using forced oscillating data from Gopalkrishnan' s research in 1993, in which all experimental cases were carried out at a fixed Reynolds and the tested cylinder was recognized as a body that had no mass and damping. However, the Reynolds and roass-damping are the very important parameters for the peak amplitude of a freely vibrating cylinder. In the present study, a function F is introduced to connect the forced oscillation and free vibration. Firstly the peak amplitude AG^* can be obtained from the function F using forced oscillation data of Gopalkrishnan' s experimental at Re = 10^4, and then the Reynolds effect is taken into account in the function f(Re), while the mass-damping effect is considered in the function K( α ), where a is the mass-damping ratio. So the peak amplitude of a freely vibrating cylinder can be predicted by the expression: A ^* = K( α )f( Re )AG^* . It is found that the peak transverse amplitudes predicted by the above equation agree very well with many recent experimental data under both high and low Reynolds conditions while roass-damping varies. Furthermore, it is seen that the Reynolds number does have a great effect on the peak amplitude of a freely vibrating cylinder. The present idea in this paper can be applied as an update in the empirical models that also use forced oscillation data to predict the vortex induced vibration (VIV) response of a long riser in the frequency domain.展开更多
Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic pr...Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic properties were investigated experimentally. The special polarization effect of rare earth in the ERF was also discussed. The forced oscillating behavior was obtained using a rheometer. The variation of the shear modulus of ERF subjected to various stress amplitude and frequency were investigated. The complex shear modulus and storage modulus of ERF were also given at different electric field intensities. Meanwhile, the creep and recovery characteristics of ERF were also measured. The equilibrium compliance Jc and the steady state recoverable compliance JR were investigated as a function of electric field strength and ratio of reactant, and the effect of ERF′s structure was analyzed. With increasing in electric field strength at fixed ratio of reactant, the plastic response diminishes, and the elastic behavior rose.展开更多
Rulmonary function tests provide an objective means to verify ventilatory dysfunction and to estimate its severity in respiratory disorders. Measurement of forced expiratory volume in 1 second (FEV1) and forced vita...Rulmonary function tests provide an objective means to verify ventilatory dysfunction and to estimate its severity in respiratory disorders. Measurement of forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) is considered to be the basic tests for the assessment of airway obstruction. Although they are useful diagnostically and prognostically, the results of FEV1 and FVC are strongly dependent on the cooperation of the patient. Lack of collaboration is particularly present in elderly patients because of mood alterations, fatigability or cognitive impairment. The forced oscillation technique (FOT) and the interrupter resistance technique are the two methods of measuring respiratory resistance during tidal breathing, they are of special interest because both of them are noninvasive, requires minimal cooperation, takes little time and can be easily repeated, especially in children and elderly subjects who cannot accomplish forced expiratory maneuvers in a reproducible manner.展开更多
Using a nine-layer global spectral model, numerical schemes with two different SST distributions in January (control case and abnormal case) have been tested to study the climatic effect, propagation charateris- tics ...Using a nine-layer global spectral model, numerical schemes with two different SST distributions in January (control case and abnormal case) have been tested to study the climatic effect, propagation charateris- tics and the maintenance mechanism of the short-term climatic oscillation caused by El Nino during northern winter. The main results are as follows: (1) During northern winter, there exist two wave trains because of the influence of El Nino. One is similar to PNA pattern, and the other is similar to EUP pattern. (2) The PNA-like wave train caused by the anomalous SST forcing in central and eastern equatorial Pacific Ocean is due to the response of ultralong wave and long wave components of Rossby mode, and the EUP-like wave train crossing Eurasia is mainly due to the wave component of Rossby mode. (3) During northern winter, the warm water region in central equatorial Pacific Ocean is the source of forced wave trains. (4) In northern winter, the energy source for maintaining the short-term climatic oscillation is from the interaction between eddies, and between eddy and zonal flow.展开更多
The normal mode method is adopted to decompose the differences between simulations with SST(sea surface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec- tral model in...The normal mode method is adopted to decompose the differences between simulations with SST(sea surface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec- tral model in order to investigate short-range climatic oscillation with various time scales forced by El Nino during the northern summer.Investigation shows that El Nino may have the following influence on atmosphere on various space-time scales.Extra-long wave components of Rossby mode forced by convective anomaly over equatorial western Pacific resulting from El Nino produce climatic oscillation on monthly(sea- sonal)time scale in middle-high latitudes of Southern and Northern Hemispheres;extra-long wave components of Kelvin mode forced by SST anomalies propagate along the equator,resulting in 30—60 day oscillation of tropical and subtropical atmosphere;and its long waves move eastward with westerly,resulting in quasi-biweek oscillation.展开更多
In the cylindrical coordinate system,a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode by solving potential equations of water waves in a rig...In the cylindrical coordinate system,a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode by solving potential equations of water waves in a rigid circular cylinder, which is subject to a vertical oscillation.It is assumed that the fluid in the circular cylindrical vessel is inviscid,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubic and vertically excited terms of the vessel was derived by expansion of two-time scales without considering the effect of surface tension.It is shown by numerical computation that different free surface standing wave patterns will be formed in different excited frequencies and amplitudes.The contours of free surface waves are agreed well with the experimental results which were carried out several years ago.展开更多
基金financially supported by the SINTEF Fisheries and Aquaculture of Norway and the National Natural Science Foundation of China(Grant No.51490674)
文摘In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.
文摘Respiratory diseases, especially asthma, are common in children. While spirometry contributes to asthma diagnosis and management in older children, it has a limited role in younger children whom are often unable to perform forced expiratory manoeuvre. The development of novel diagnostic methods which require minimal effort, such as forced oscillation technique(FOT) is, therefore, a welcome and promising addition. FOT involves applying external, small amplitude oscillations to the respiratory system during tidal breathing. Therefore, it requires minimal effort and cooperation. The FOT has the potential to facilitate asthma diagnosis and management in preschool children by faciliting the objective measurement of baseline lung function and airway reactivity in children unable to successfully perform spirometry. Traditionally the use of FOT was limited to specialised centres. However, the availability of commercial equipment resulted in its use both in research and in clinical practice. In this article, we review the available literature on the use of FOT in childhood asthma. The technical aspects of FOT are described followed by a discussion of its practical aspects in the clinical field including the measurement of baseline lung function and associated reference ranges, bronchodilator responsiveness and bronchial hyperresponsiveness. We also highlight the difficulties and limitations that might be encountered and future research directions.
文摘The experimental results on the influences of oscillating leading edge vortex-flaps of triangular wing toward the vortex breakdown are presented in this paper. The results reveal that forced oscillationscan delay the breakdown of concentrated vortices, and large reversed-flow-regions which originally appear at the upper surface of the fixed wing at high angles of attack would be suppressed to some extent, depending on the oscillation frequencies. As a consequence, the influences can be optimized by selecting proper oscillation frequencies.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
基金Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund) (KRF-2008-D00556)Mokpo National University RIC for Midisize Shipbuilding
文摘A series of numerical sinmlations about a small scale (aspect ratio: 63.2) flexible pipe undergoing forced harmonious oscillation and vortex-induced vibration (VIV) have been taken into account. The wake hydrodynamics and pipe deformation were accomplished by ANSYS MFX solution strat- egy designed for fluid-structure interaction (FSI) problem with well-performed LES model. The configuration of structured mesh, multi-domain design, different mesh stiffness admeasured by User Fortran ensured that the numerical task was competent to deal with large deformation related to this case. The introduction of instantaneous amplitude definition and modeless component decom- position method (Chen and Kim, 2008) was helpful to reveal much more information from modal analysis. Most results from numerical simulation are generally consistent with those from model test (Choi and Hong, 2000) via the comparison between them. As supplementary to model test, visualization of the vortex wake was also provided. It has been proved that the forced oscillation doesn't only excite a complicated dumbbell-like wake pattern around the outer thimble, but also results in inner flow inside the PVC pipe. The velocity of the inner flow increases with the frequency of forced oscillation.
基金This project was financially supported bythe National Natural Science Foundation of China ( Grant No50323004)a grant fromthe Science and Technology Commission of Shanghai Municipality (No05DJ14001)
文摘A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibra- tions (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of selfexcited oscillations and the force coemcients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m^# and material damping ratio of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. In- stances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Wifliamson' s group are in rather good agreement.
文摘This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two groups of 'Figure of Eight' oscillation patterns are under investigation at Reynolds number Re = 24000. The ' Figure of Eight' pattern in each group is with identical shape but oppusite orbital directions. The numerical results on hydrodynamic forces, higher order force components, and vortex shedding modes are extensively studied and compared with the measured experimental data. It is found that the fluid force in phase with the velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude due to the opposite orbital direction. Higher order force components in cross-flow direction are found to occur at odd nmnber times of the oscillating frequency, while even nmbers dominate the higher order force components in in-llne direction. The 2C and 2T vortex shedding modes are well reproduced due to the opposite orbital direction effect. Comparisons between numerical and experimental results indicate that the present numerical model could be a rational tool for the identification of hydrodynamic coefficients which are normally applied in empirical models to predict the vortex-induced vibrations of slender marine structures.
文摘The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em></span>), with the commutation relation <img src="Edit_28f5b839-7de4-41e5-9ed8-69dc1bf72c2c.bmp" alt="" />, and using a Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s like equation on these variable, and associating a linear operator to a constant of motion <em>K</em> (<em>x, v, t</em>) of the classical system, The comparison with the quantization in the space (<em>x, p</em>) is done with the usual Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s equation for the Hamiltonian <em>H</em><span style="white-space:normal;">(</span><em style="white-space:normal;">x, p, t</em><span style="white-space:normal;">)</span>, and with the commutation relation <img src="Edit_cca7e318-5b35-4c55-8f09-6089970ce9a2.bmp" alt="" />. It is found that for the non-resonant case, both forms of quantization bring about the same result. However, for the resonant case, both forms of quantization are different, and the probability for the system to be in the exited state for the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization has fewer oscillations than the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, the average energy of the system is higher in (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, and the Boltzmann-Shannon entropy on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization is higher than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization.
基金supported by the National Key Basic Research Program of China(973 Program)(2013CB228204)the National Natural Science Foundation of China(51137002,51190102).
文摘With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.
基金supported by the funding from State University of New York
文摘The oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations have caught many researchers’ attentions.Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have a negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system reliability and dynamic properties, it is important to first distinguish forced oscillations from free oscillations and then locate the sources of forced oscillations in a timely manner. The negative impact of forced oscillation can be mitigated when they are detected and located. This paper provides an overview of the analysis technique of forced oscillations in power systems. In addition, some future opportunities are discussed in forced oscillation studies.
基金funded by Jiangsu electric power company project“key technology research on planning and demonstration application of inter line power flow controller”,J2020088.
文摘With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interline power flow controller (IPFC) is used as a power suppression carrier and its mechanism is analyzed using the linearized state-space method to improve the system damping ratio. It is shown that although the IPFC can suppress forced oscillation with well-designed parameters, its capability of improving the system damping ratio is limited. Thus, combined with the repetitive control method, an additional repetitive controller (ARC) is proposed to further dampen the forced power oscillation. The ARC control scheme is characterized by outstanding tracking performance to a system steady reference value, and the main IPFC controller with the ARC can provide higher damping, and further reduce the amplitude of oscillations to zero compared with a supplementary damping controller (SDC). Simulation results show that the IPFC with an ARC can not only greatly reduce the oscillation amplitude, but also actively output the compensation power according to the reference value of the ARC tracking system.
文摘In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the ripple in general is very small, its formation is due to the instability of the laminar flow or the evolution of the small-scale coherent structures in the sublayer adjacent to the wall of the open channel. When the shear stresses caused by the disturbing waves or the coherent structure near the bed surface boundary and the water flow itself are greater than the shields stresses, responses on the bed surface appear and the sand ripple forms. If the frequency of the shear stress caused by the disturbance is close to the natural frequency of the sand grains that produced resonance, such a phenomenon is called the 'detection property' of the sediment. It is at this point that the maximum resonance appears and the sand ripple develops rapidly.
文摘It has been observed in laboratory experiments that when nonlinear dispersive waves are forced periodically from one end of undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. The observation has been confirmed mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given to the initial-boundary-value problem {ut+ux+uux+uxxx=0, u(x,0)=φ(x), 0〈x〈1, t〉0,u(0,t)=h(t), u(1,t) = 0, ux(1,t) = 0, t〉0.It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude solution u of (*) becomes eventually time-periodic. Viewing (*) (without the initial condition) as an infinite-dimensional dynamical system in the Hilbert space L^2(0, 1), we also demonstrate that for a given periodic boundary forcing with small amplitude, the system (*) admits a (locally) unique limit cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included for the interested readers to conduct further investigations.
文摘Large interconnected power systems are usually subjected to natural oscillation(NO)and forced oscillation(FO).NO occurs due to system transient response and is characterized by several oscillation modes,while FO occurs due to external perturbations driving generation sources.Compared to NO,FO is considered a more severe threat to the safe and reliable operation of power systems.Therefore,it is important to locate the source of FO so corrective actions can be taken to ensure stable power system operation.In this paper,a novel approach based on two-step signal processing is proposed to characterize FO in terms of its frequency components,duration,nature,and the location of the source.Data recorded by the Phasor Measurement Units(PMUs)in a Wide Area Monitoring System(WAMS)is utilized for analysis.As PMU data usually contains white noise and appears as multi-frequency oscillatory signal,the first step is to de-noise the raw PMU data by decomposing it into a series of intrinsic mode functions(IMF)using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(ICEEMDAN)technique.The most appropriate IMF containing the vital information is selected using the correlation technique.The second step involves various signal processing and statistical analysis tools such as segmented Power Spectrum Density(PSD),excess kurtosis,cross PSD etc.to achieve the desired objectives.The analysis performed on the simulated two-area four-machine system,reduced WECC-179 bus 29 machine system,and the real-time power system PMU data set from ISO New England,demonstrates the accuracy of the proposed method.The proposed approach is independent of complex network topologies and their characteristics,and is also robust against measurement noise usually contained in PMU data.
基金This project was financially supported by the National Natural Science Foundation of China (Grant No.50323004)a Grant fromthe Science &Technology Commission of Shanghai Municipality (No.05DJ14001)
文摘The Reynolds effect and mass-damping effect on the peak amplitude of a freely vibrating cylinder is studied by using forced oscillating data from Gopalkrishnan' s research in 1993, in which all experimental cases were carried out at a fixed Reynolds and the tested cylinder was recognized as a body that had no mass and damping. However, the Reynolds and roass-damping are the very important parameters for the peak amplitude of a freely vibrating cylinder. In the present study, a function F is introduced to connect the forced oscillation and free vibration. Firstly the peak amplitude AG^* can be obtained from the function F using forced oscillation data of Gopalkrishnan' s experimental at Re = 10^4, and then the Reynolds effect is taken into account in the function f(Re), while the mass-damping effect is considered in the function K( α ), where a is the mass-damping ratio. So the peak amplitude of a freely vibrating cylinder can be predicted by the expression: A ^* = K( α )f( Re )AG^* . It is found that the peak transverse amplitudes predicted by the above equation agree very well with many recent experimental data under both high and low Reynolds conditions while roass-damping varies. Furthermore, it is seen that the Reynolds number does have a great effect on the peak amplitude of a freely vibrating cylinder. The present idea in this paper can be applied as an update in the empirical models that also use forced oscillation data to predict the vortex induced vibration (VIV) response of a long riser in the frequency domain.
基金NSF (50373034) Physics Chemistry National Key Subject Cultivation Point Grant of Jiangsu Province
文摘Nano-SiOdoped with rare earth carboxylate grafting continuous component of functional poly-silicone liquid, a kind of subsidence high-resistance. Electrorheological fluid (ERF) was synthesized. And its viscoelastic properties were investigated experimentally. The special polarization effect of rare earth in the ERF was also discussed. The forced oscillating behavior was obtained using a rheometer. The variation of the shear modulus of ERF subjected to various stress amplitude and frequency were investigated. The complex shear modulus and storage modulus of ERF were also given at different electric field intensities. Meanwhile, the creep and recovery characteristics of ERF were also measured. The equilibrium compliance Jc and the steady state recoverable compliance JR were investigated as a function of electric field strength and ratio of reactant, and the effect of ERF′s structure was analyzed. With increasing in electric field strength at fixed ratio of reactant, the plastic response diminishes, and the elastic behavior rose.
文摘Rulmonary function tests provide an objective means to verify ventilatory dysfunction and to estimate its severity in respiratory disorders. Measurement of forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) is considered to be the basic tests for the assessment of airway obstruction. Although they are useful diagnostically and prognostically, the results of FEV1 and FVC are strongly dependent on the cooperation of the patient. Lack of collaboration is particularly present in elderly patients because of mood alterations, fatigability or cognitive impairment. The forced oscillation technique (FOT) and the interrupter resistance technique are the two methods of measuring respiratory resistance during tidal breathing, they are of special interest because both of them are noninvasive, requires minimal cooperation, takes little time and can be easily repeated, especially in children and elderly subjects who cannot accomplish forced expiratory maneuvers in a reproducible manner.
文摘Using a nine-layer global spectral model, numerical schemes with two different SST distributions in January (control case and abnormal case) have been tested to study the climatic effect, propagation charateris- tics and the maintenance mechanism of the short-term climatic oscillation caused by El Nino during northern winter. The main results are as follows: (1) During northern winter, there exist two wave trains because of the influence of El Nino. One is similar to PNA pattern, and the other is similar to EUP pattern. (2) The PNA-like wave train caused by the anomalous SST forcing in central and eastern equatorial Pacific Ocean is due to the response of ultralong wave and long wave components of Rossby mode, and the EUP-like wave train crossing Eurasia is mainly due to the wave component of Rossby mode. (3) During northern winter, the warm water region in central equatorial Pacific Ocean is the source of forced wave trains. (4) In northern winter, the energy source for maintaining the short-term climatic oscillation is from the interaction between eddies, and between eddy and zonal flow.
文摘The normal mode method is adopted to decompose the differences between simulations with SST(sea surface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec- tral model in order to investigate short-range climatic oscillation with various time scales forced by El Nino during the northern summer.Investigation shows that El Nino may have the following influence on atmosphere on various space-time scales.Extra-long wave components of Rossby mode forced by convective anomaly over equatorial western Pacific resulting from El Nino produce climatic oscillation on monthly(sea- sonal)time scale in middle-high latitudes of Southern and Northern Hemispheres;extra-long wave components of Kelvin mode forced by SST anomalies propagate along the equator,resulting in 30—60 day oscillation of tropical and subtropical atmosphere;and its long waves move eastward with westerly,resulting in quasi-biweek oscillation.
文摘In the cylindrical coordinate system,a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode by solving potential equations of water waves in a rigid circular cylinder, which is subject to a vertical oscillation.It is assumed that the fluid in the circular cylindrical vessel is inviscid,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubic and vertically excited terms of the vessel was derived by expansion of two-time scales without considering the effect of surface tension.It is shown by numerical computation that different free surface standing wave patterns will be formed in different excited frequencies and amplitudes.The contours of free surface waves are agreed well with the experimental results which were carried out several years ago.