Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a m...Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.展开更多
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t...Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.展开更多
Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</...Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</span> <span style="font-family:Verdana;">management is critical and guarantees optimum working temperature in a</span><span style="font-family:Verdana;"> battery pack. In the various battery thermal management technologies, air cooling is one of the most used solutions. The following work analyzes the cooling performance of the air-cooling thermal management system by choosing appropriate system parameters and analyzes using CFD simulations for accurate thermal modeling. These parameters include the influence of airflow rate </span><span style="font-family:Verdana;">and cell spacing on the configuration. The outcome of the simulations is</span><span style="font-family:Verdana;"> compared using parameters like maximum temperature, and temperature distribution in the battery module to obtain optimum results for further applications. Finally, the simulations of the optimal solution will be compared to experimental results for validation.展开更多
This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different appro...This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different approaches and the results showed that the simplified calculations would give approximated cooling values with an 11.6% maximum error. The mass flow rate, upstream pressure and cooling capacity of the gaseous CO2 decreased with time. A maximum 48.5 watts of cooling was recorded at minute 4 and a minimum value of 10.4 watts at the end of the test. The drop in cooling capacity is due to the evaporation of the liquid CO2 inside the small cylinder which cools the two-phase CO2 mixture and causes a pressure drop (from 6 MPa to 2.97 MPa), which also affects the mass flow rate of gaseous CO2 exiting the orifice (from 0.56 g/s to 0.24 g/s). If this cooling technique is to be considered in portable compact-cooling systems, the mass, pressure and cooling capacity drop with time must be solved. One of the solutions could be to cover the cylinder with a heating coat to compensate for the heat absorbed by the evaporation of the liquid CO2.展开更多
In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microsco...A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microscopic analysis The precipitation characteristic of α2 phase was discussed. The precipitation of α2 phase would proceed by the nucleation and growth of α2 phase dependent on the diffusion of Al atoms. And a comparison on the difference of precipitation of α2 phase was carried out under the conditions of air-cooling and quenching in water. The investigation showed that the air-cooling and even quenching could supply enough time for the precipitation and growth of α2 phase when Al content reached a certain value even though far away from the stoichiometric composition of Ti3Al.展开更多
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl...A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.展开更多
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c...The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.展开更多
As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd...As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore...Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI), angularity number (AN), index of aggregate particle shape and texture (IAPST), porosity and pore size, respectively. The results show that SCR is a porous and rough aggregate. Apparent density, void, water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation, respectively. However, bulk density of SCR is lower than that of LCR with the same gradation. SI, AN, IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation, respectively. The smaller particle size of SCR, the larger of its AN, IAPST and porosity.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angula...Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number(AN) and index of aggregate particle shape and texture(IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.展开更多
The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard...The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard the high- and medium-temperature transformation and martensite transformation. The results conform to the materials science theories.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the...In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
Base on Prof. Maa Dah-You’s general theory of the microperforated-panel (MPP) absorber, We designed a noise reduction structure-sound attenuating cabinet (SAC). It can be applied to air-cooled communication products ...Base on Prof. Maa Dah-You’s general theory of the microperforated-panel (MPP) absorber, We designed a noise reduction structure-sound attenuating cabinet (SAC). It can be applied to air-cooled communication products to reduce system noise. This article introduces engineering design method of SAC and laboratory test noise reduction results of application of SAC.展开更多
A mathematic model for packed air-cooling tower thermodynamic calculation is set up in this paper on the basis of fundamental heat and mass transfer equations. Based on the Double Film theory, direct equation-solving ...A mathematic model for packed air-cooling tower thermodynamic calculation is set up in this paper on the basis of fundamental heat and mass transfer equations. Based on the Double Film theory, direct equation-solving method is used to simulate air-cooling tower, and variation of parameters is taken to analyze the data and results of the program.展开更多
Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of car...Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of carrying capacity of regional water resources", finally the thinking on adopting air-cooling technology to develop nuclear power in Henan Province was expounded.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 91834301 and 22078088)the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 51621002)the Shanghai Rising-Star Program (Grant No. 21QA1401900)。
文摘Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.
文摘Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.
文摘Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</span> <span style="font-family:Verdana;">management is critical and guarantees optimum working temperature in a</span><span style="font-family:Verdana;"> battery pack. In the various battery thermal management technologies, air cooling is one of the most used solutions. The following work analyzes the cooling performance of the air-cooling thermal management system by choosing appropriate system parameters and analyzes using CFD simulations for accurate thermal modeling. These parameters include the influence of airflow rate </span><span style="font-family:Verdana;">and cell spacing on the configuration. The outcome of the simulations is</span><span style="font-family:Verdana;"> compared using parameters like maximum temperature, and temperature distribution in the battery module to obtain optimum results for further applications. Finally, the simulations of the optimal solution will be compared to experimental results for validation.
文摘This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different approaches and the results showed that the simplified calculations would give approximated cooling values with an 11.6% maximum error. The mass flow rate, upstream pressure and cooling capacity of the gaseous CO2 decreased with time. A maximum 48.5 watts of cooling was recorded at minute 4 and a minimum value of 10.4 watts at the end of the test. The drop in cooling capacity is due to the evaporation of the liquid CO2 inside the small cylinder which cools the two-phase CO2 mixture and causes a pressure drop (from 6 MPa to 2.97 MPa), which also affects the mass flow rate of gaseous CO2 exiting the orifice (from 0.56 g/s to 0.24 g/s). If this cooling technique is to be considered in portable compact-cooling systems, the mass, pressure and cooling capacity drop with time must be solved. One of the solutions could be to cover the cylinder with a heating coat to compensate for the heat absorbed by the evaporation of the liquid CO2.
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microscopic analysis The precipitation characteristic of α2 phase was discussed. The precipitation of α2 phase would proceed by the nucleation and growth of α2 phase dependent on the diffusion of Al atoms. And a comparison on the difference of precipitation of α2 phase was carried out under the conditions of air-cooling and quenching in water. The investigation showed that the air-cooling and even quenching could supply enough time for the precipitation and growth of α2 phase when Al content reached a certain value even though far away from the stoichiometric composition of Ti3Al.
基金Project (2013B091300016) supported by the Department of Science and Technology of Guangdong Province,China
文摘A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.
文摘The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.
文摘As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金Funded by the National Basic Research Program of China(No.2009CB623105)the Natural Science Foundation of Education Agency of Anhui Province(No.KJ2012A052)+1 种基金the Anhui Provincial Natural Science Foundation(No.1208085ME82)the Doctor Fund of Anhui University of Architecture(No.20123302)
文摘Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI), angularity number (AN), index of aggregate particle shape and texture (IAPST), porosity and pore size, respectively. The results show that SCR is a porous and rough aggregate. Apparent density, void, water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation, respectively. However, bulk density of SCR is lower than that of LCR with the same gradation. SI, AN, IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation, respectively. The smaller particle size of SCR, the larger of its AN, IAPST and porosity.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
基金Funded by the National Basic Research Program of China(2009CB623105)the Natural Science Foundation of Education Agency of Anhui Province (KJ2012A052)+1 种基金the Anhui Provincial Natural ScienceFoundation(1208085ME82)the Doctor Fund of Anhui University of Architecture(20123302)
文摘Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number(AN) and index of aggregate particle shape and texture(IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.
文摘The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard the high- and medium-temperature transformation and martensite transformation. The results conform to the materials science theories.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
文摘In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘Base on Prof. Maa Dah-You’s general theory of the microperforated-panel (MPP) absorber, We designed a noise reduction structure-sound attenuating cabinet (SAC). It can be applied to air-cooled communication products to reduce system noise. This article introduces engineering design method of SAC and laboratory test noise reduction results of application of SAC.
文摘A mathematic model for packed air-cooling tower thermodynamic calculation is set up in this paper on the basis of fundamental heat and mass transfer equations. Based on the Double Film theory, direct equation-solving method is used to simulate air-cooling tower, and variation of parameters is taken to analyze the data and results of the program.
文摘Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of carrying capacity of regional water resources", finally the thinking on adopting air-cooling technology to develop nuclear power in Henan Province was expounded.