期刊文献+
共找到4,721篇文章
< 1 2 237 >
每页显示 20 50 100
Subsurface Airflow Induced by Natural Forcings 被引量:1
1
作者 JiuJ.Jiao LIHai-long 《地球科学进展》 CAS CSCD 2004年第3期415-421,共7页
Subsurface air flow can be induced by natural processes, such as atmospheric or barometric pressure changes, water table fluctuations, topographic effects, and rainfall infiltration. Barometric pressure fluctuations a... Subsurface air flow can be induced by natural processes, such as atmospheric or barometric pressure changes, water table fluctuations, topographic effects, and rainfall infiltration. Barometric pressure fluctuations are the most common cause of subsurface air flow, which can be significant under favourable geological conditions. This process has been studied most extensively because of its application to passive soil vapor extraction. Soil air flow induced by water table fluctuations can be significant, particularly where the fluctuations are of high frequency, for example, in tidal-influenced coastal areas. Topographic effects can lead to strong subsoil air flow in areas with great elevation differences. Rainfall infiltration usually produces only weak airflow. Air flow induced by these natural processes has important environmental and engineering implications. Among the different processes, air flow induced by tidal fluctuations has been studied the least, although it has exciting applications to coastal engineering projects and environmental remediation. 展开更多
关键词 AIRFLOW UNSATURATED ZONE NATURAL forcings
下载PDF
Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM:Sensitivity to Convection Schemes 被引量:8
2
作者 吴春强 周天军 +1 位作者 孙德征 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期80-98,共19页
Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve... Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed. 展开更多
关键词 SAMIL convection scheme cloud radiative forcing greenhouse effect
下载PDF
Efficient Anomalous Forcings for Linear Problems
3
作者 李志锦 纪立人 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期436-446,共11页
For linear forcing problems, a method is developed to provide a set of forcing modes which form a complete orthonormal basis for the finite-time response to steady forcing in the energy inner product space. The forcin... For linear forcing problems, a method is developed to provide a set of forcing modes which form a complete orthonormal basis for the finite-time response to steady forcing in the energy inner product space. The forcing modes are found by calculating eigenvectors of a positive definite and symmetric matrix determined from given equations of motion. The amplitude of responses to forcing modes is given in terms of the associated eigenvalues. This method is used in a nondivergent barotropic model linearized about the 300 hPa zonally-varying climatological flow both for northern summertime and wintertime. The results show that the amplitude of response varies considerably with different forcing modes. Only a few of forcing modes associated with the leading eigenvalues, called efficient forcing mode, can excite significant response. The efficient forcing modes possess highly localized spatial structure with wavetrain appearance. Most of the efficient forcings are located to the south of regions of the jet cores. The forcings located over polar regions are also efficient. In addition, the response is larger in wintertime than in summertime for a given forcing. 展开更多
关键词 Generalized eigenvalue and eigenvector Strength factor of response Efficient forcing
下载PDF
Shortwave Cloud and Aerosol Radiative Forcings and Their Effects on the Vertical Local Heating/Cooling Rates
4
作者 L. Akana Nguimdo D. Njomo 《Atmospheric and Climate Sciences》 2013年第3期337-347,共11页
An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears tha... An analysis of atmospheric SW-radiative forcing and local heating/cooling rate is made using a one year temporal and vertical profiles of aerosol and cloud over Yaoundé (11.51°E, 3.83°N). It appears that the direct influence of aerosols on the surface compared to the TOA can be 3 times larger. Annual mean value obtained at 559 mb altitude is +27.74 W/m2 with range from 0 to +43 W/m2. At 904 mb, we obtained an annual mean of ﹣46.22 W/m2 with range from ﹣65 to ﹣9 W/m2. Frequency distribution indicates that more than 95% of ARF are between +10 and +70 W/m2 at 559 mb (upper limit of UL), and more than 85% of ARF are between ﹣70 and ﹣10 W/m2 at 904 mb (upper limit of PBL). This sign change is explained by the fact that the backscattering peaks at the upper limit of the aerosol PBL layer. The maximum CRF is noted at TOA where it reaches ﹣600 W/m2 based on the time interval and the structure of clouds. The highest values occur between 11.50 and 13.50 LST. Clouds lead to a general heating of the entire atmospheric column with a much greater effect near the surface. Aerosols effect on the heating rate profile show strong cooling during the day for the lower atmosphere, with slight heating at the upper atmosphere. This cooling contribution generally increases from the surface and peacks at the upper boundary of aerosol layer where reflectivity is the most important. Depending on the moment of the day, average heating effect of clouds peacks at surface or within the middle troposphere due to the absorption by clouds particles. Vertical profiles deeply evolve exhibiting differences that exceed ﹣3 K/day according to altitude from one hour to another during a given mean solar day. 展开更多
关键词 Planetary Boundary LAYER Upper LAYER Clear Sky FLUX ALL-SKY FLUX Net DOWNWARD FLUX Radiative FORCING Heating/Cooling Rates
下载PDF
Force CT高级建模迭代重建算法对门静脉图像质量的影响
5
作者 陈洋 周子茜 +1 位作者 吕俊红 陈柳娟 《影像研究与医学应用》 2024年第4期76-78,共3页
目的:探讨Force CT高级建模迭代重建算法(ADMIRE)对门静脉图像质量影响。方法:回顾性分析2022年1—4月于中山大学附属第八医院行上腹部CT平扫及增强的40例患者影像资料,在syngo.via后处理工作站重建,采用门脉期原始数据重建出滤波反投... 目的:探讨Force CT高级建模迭代重建算法(ADMIRE)对门静脉图像质量影响。方法:回顾性分析2022年1—4月于中山大学附属第八医院行上腹部CT平扫及增强的40例患者影像资料,在syngo.via后处理工作站重建,采用门脉期原始数据重建出滤波反投影算法(FBP)、ADMIRE1、ADMIRE3、ADMIRE5 4组不同重建算法的图像,在4组不同算法图像上测量门静脉干中心位置、肝实质及同层竖脊肌的CT值和噪声值,计算门静脉和肝实质的信噪比(SNR)和对比噪声比(CNR)。此外,由两位具有5年以上诊断经验的医生对图像进行主观评分。结果:随着迭代等级的增高,图像的CNR、SNR呈现上升的趋势,图像的噪声值呈现下降的趋势,其中ADMIRE5组图像中门静脉和肝脏具有最高的CNR和SNR且具有最低的噪声值,以及最高的主观评分,采用ADMIRE5重建算法的门静脉与周围组织对比非常好,门静脉5级分支显示良好。结论:高级建模迭代重建ADMIRE算法相比于FBP重建算法,降噪效果更好,门静脉的显示更加锐利,能提升门静脉的图像质量。 展开更多
关键词 门静脉 高级建模迭代重建 Force CT 图像质量
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
6
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(UAV) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
7
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
8
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK DAMAGE MICRO-MECHANICS Constitutive model Cohesive force
下载PDF
Nanomotion of bacteria to determine metabolic profile
9
作者 S.N.Pleskova E.V.Lazarenko +4 位作者 N.A.Bezrukov R.N.Kriukov A.V.Boryakov M.E.Dokukin S.I.Surodin 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期1-9,共9页
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl... In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium. 展开更多
关键词 Nanomotion BACTERIA CANTILEVER OSCILLATION Atomic force microscopy METABOLISM
下载PDF
Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning
10
作者 Kuijie Li Jiahua Li +10 位作者 Xinlei Gao Yao Lu Depeng Wang Weixin Zhang Weixiong Wu Xuebing Han Yuan-cheng Cao Languang Lu Jinyu Wen Shijie Cheng Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期484-498,共15页
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa... Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems. 展开更多
关键词 Lithium-ion battery Thermal runaway Preload force Expansionforce Early warning Multidimensional signal
下载PDF
Self-assembly of perovskite nanocrystals:From driving forces to applications
11
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 SELF-ASSEMBLY Metal halide perovskite NANOCRYSTALS Driving forces
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
12
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
Attribution of Biases of Interhemispheric Temperature Contrast in CMIP6 Models
13
作者 Shiyan ZHANG Yongyun HU +1 位作者 Jiankai ZHANG Yan XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期325-340,共16页
One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined... One of the basic characteristics of Earth's modern climate is that the Northern Hemisphere(NH) is climatologically warmer than the Southern Hemisphere(SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average(0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from -0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the crossequatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents.Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models. 展开更多
关键词 interhemispheric temperature contrast energy balance shortwave cloud forcing ITCZ CMIP6 AGCM
下载PDF
Circulation Background and Genesis Mechanism of a Cold Vortex over the Tibetan Plateau during Late April 2018
14
作者 Duming GAO Jiangyu MAO +1 位作者 Guoxiong WU Yimin LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1201-1216,共16页
A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates th... A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates the genesis mechanism of the cold TP vortex(TPV)by diagnosing reanalysis data and conducting numerical experiments.Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity(PV)forcing from the tropopause and diurnal thermodynamic impact from the surface.As a positive PV anomaly in the lower stratosphere moved towards the TP,the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward,forming isentropic-isplacement ascent and reducing static stability over the TP.The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site,resulting in ascending air in the free atmosphere.This,in conjunction with the descending air in the valley area during the night,produced air stretching just at the TPV genesis site.Because the surface cooling at night increased the surface static stability,the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity.Consequently,the cold TPV was generated over the valley at night. 展开更多
关键词 TROPOPAUSE PV forcing air column stretching static stability vertical vorticity
下载PDF
Lamellar water induced quantized interlayer spacing of nanochannels walls
15
作者 Yue Zhang Chenlu Wang +3 位作者 Chunlei Wang Yingyan Zhang Junhua Zhao Ning Wei 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期356-365,共10页
The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of... The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids.However,the situation of channel-wall is crucial but attracts less attention and remains unknown.To fundamentally understand the mechanism of channel-walls in nanoconfinement,we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability.The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm.The quantized interlayer spacing is attributed to water molecules becoming laminated structures,and the stable states are corresponding to the monolayer,bilayer and trilayer water configurations,respectively.The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water.Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels. 展开更多
关键词 NANOCONFINEMENT Quantized spacing Lamellar water layer MD simulations Entropy force
下载PDF
A review of physicochemical properties of dissolved organic carbon and its impact over mountain glaciers
16
作者 NIU Hewen CHEN Mengxue +5 位作者 KANG Shichang SHUKLA Tanuj QIN Huili GAO Wanni HUANG Shihai ZHANG Fu 《Journal of Mountain Science》 SCIE CSCD 2024年第1期1-19,共19页
Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ... Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models. 展开更多
关键词 Mountain glaciers Dissolved organic carbon Molecular composition Radiative forcing
下载PDF
采用解析和数值方法分析浮动式矩形浮箱的波浪诱导载荷研究
17
作者 Sarat Chandra Mohapatra Iuri Baldaconi da Silva Bispo +1 位作者 Yuchan Guo C.Guedes Soares 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期113-126,共14页
A three-dimensional mathematical hydrodynamic model associated with surface wave radiation by a floating rectangular box-type structure due to heave,sway,and roll motions in finite water depth is investigated based on... A three-dimensional mathematical hydrodynamic model associated with surface wave radiation by a floating rectangular box-type structure due to heave,sway,and roll motions in finite water depth is investigated based on small amplitude water wave theory and linear structural response.The analytical expressions for the radiation potentials,wave forces,and hydrodynamic coefficients are presented based on matched eigenfunction expansion method(MEFEM).The correctness of the analytical results of wave forces is compared with the construction of a numerical model using the open-source boundary element method code NEMOH.In addition,the present result is compared with the existing published experimental results available in the literature.The effects of the different design parameters on the floating box-type rectangular structure are studied by analyzing the vertical wave force,horizontal wave force,torque,added mass,and damping coefficients due to the heave,sway,and roll motions,and the comparison analysis between the forces is also analyzed in detail.Further,the effect of reflection and transmission coefficients by varying the structural width and drafts are analyzed. 展开更多
关键词 Mathematical model MEFEM Box-type structure BEM code NEMOH Wave forces
下载PDF
An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
18
作者 邓凯丰 李梦 +1 位作者 胡祥敏 陈涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期567-576,共10页
An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped... An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source. 展开更多
关键词 EVACUATION social force model hazard source unidirectional pedestrian flow
下载PDF
Culturally competent care across borders: Implementing culturally responsive teaching for nurses in diverse workforces
19
作者 Abdulqadir J.Nashwan 《International Journal of Nursing Sciences》 CSCD 2024年第1期155-157,共3页
The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as... The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8]. 展开更多
关键词 TEACHING NURSE FORCES
下载PDF
Research on Optimal Preload Method of Controllable Rolling Bearing Based on Multisensor Fusion
20
作者 Kuosheng Jiang Chengrui Han Yasheng Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3329-3352,共24页
Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal ... Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings. 展开更多
关键词 MULTI-SENSOR information fusion neural network preload force
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部