期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Flow Control over a Conical Forebody by Duty-Cycle Actuations 被引量:2
1
作者 郑博睿 高超 +2 位作者 李一滨 刘峰 罗时钧 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第1期58-63,共6页
Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment,... Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered. 展开更多
关键词 conical forebody plasma actuator flow control duty cycle
下载PDF
Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation 被引量:1
2
作者 郑博睿 G高超 +2 位作者 李一滨 刘锋 罗时钧 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第4期350-356,共7页
The flow control mechanism of plasma actuators with periodic pulsed discharge to control the bi-stable vortices over a cone-cylinder is investigated. The actuators are installed on the leeward surface near the apex of... The flow control mechanism of plasma actuators with periodic pulsed discharge to control the bi-stable vortices over a cone-cylinder is investigated. The actuators are installed on the leeward surface near the apex of a cone which has a semi-apex angle of 10°. The effectiveness of the plasma actuation under different free-stream velocities and angles of attack is analyzed. The pressure distributions over the conical forebody are measured by both steady and dynamic pressure transducers. The transient dynamic pressure distribution tends to gradually become steady as the free-stream velocity increases, that is, the pulsed actuation approximates a continuous one. Furthermore, the flow control effectiveness becomes less noticeable as the free-stream velocity or the angle of attack increases under certain controlling electrical parameters. 展开更多
关键词 flow control conical forebody periodic pulsed actuation plasma actuator
下载PDF
Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators 被引量:1
3
作者 郑博睿 薛明 葛畅 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期286-295,共10页
Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge(DBD)plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force,... Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge(DBD)plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force, a singledirection induced jet, and an unclear control mechanism. We carry out wind tunnel experiments involving the forebody vortex control of a slender body at high angles of attack using an innovative extended DBD actuator, which has a stronger capacity to induce an electric wind than a DBD actuator. Through synchronous measurements of the pressure distribution and particle image velocimetry(PIV), the spatiotemporal evolution of the dynamic interactions between plasma-actuationinduced vortices and forebody asymmetric vortices is analyzed. The influence of plasma discharge on the boundary layer separation around a slender body and the spatial topological structures of asymmetric vortices are further surveyed, as the optimized actuation parameters. Extended DBD actuators are found to be more capable of controlling asymmetric vortices than DBD actuators, and a linear proportionality of the sectional lateral force versus the duty ratio is achieved.There exists an optimal normalized reduced frequency( f+= 2π fpd/U∞= 2.39) for asymmetric vortex control under the present experimental conditions. The research results can provide technical guidance for the control and reuse of forebody asymmetric vortices. 展开更多
关键词 plasma flow control dielectric barrier discharge forebody asymmetric vortex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部