Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological obse...Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological observational data in a period of two years as the reference, the maximum and minimum temperature predictions of Shenyang station from the European Center for Medium-Range Weather Forecasts (ECMWF) and national intelligent grid forecasts are objectively corrected by using wavelet analysis, sliding training and other technologies. The evaluation results show that the sliding training time window of the maximum temperature is smaller than that of the minimum temperature, and their difference is the largest in August, with a difference of 2.6 days. The objective correction product of maximum temperature shows a good performance in spring, while that of minimum temperature performs well throughout the whole year, with an accuracy improvement of 97% to 186%. The correction effect in the central plains is better than in the regions with complex terrain. As for the national intelligent grid forecasts, the objective correction products have shown positive skills in predicting the maximum temperatures in spring (the skill-score reaches 0.59) and in predicting the minimum temperature at most times of the year (the skill-score reaches 0.68).展开更多
In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized ...In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China.展开更多
[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu...[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.展开更多
Maximum and minimum temperatures time series of Congo-Brazzaville are analyzed for trend and discontinuities over the period 1932 to 2010. Temperatures series show an irregular increase. A total of 8 synoptic stations...Maximum and minimum temperatures time series of Congo-Brazzaville are analyzed for trend and discontinuities over the period 1932 to 2010. Temperatures series show an irregular increase. A total of 8 synoptic stations show positive trends in their annual mean maximum temperature series, and 7 of them are significant, with higher trends for urban stations. Annual mean minimum temperature showed 6 stations having positive trends. This increase is in relation with observations at regional scale. However, the differences are observed between large towns (Brazzaville and Pointe-Noire), and small or rural towns (Dolisie, Sibiti, Impfondo, Djambala). Trends in diurnal temperature range (DTR) are large positive trends in maximum temperature that are mainly observed in cities. The curve of DTR shows a decreasing trend which indicates the increasing of minimum temperatures. The effects of urbanization on temperature trends are investigated. Most stations regarded as urban stations are still useful for trend analysis;being situated on the suburban of the studied cities, they are therefore, not substantially influenced by the urban heat island.展开更多
[Objective] The aim was to study the refined forecast method of daily highest temperature in Wugang City from July to September. IM[ethod] By dint of ECMWF mode product and T231 in 2009 and 2010 and daily maximum temp...[Objective] The aim was to study the refined forecast method of daily highest temperature in Wugang City from July to September. IM[ethod] By dint of ECMWF mode product and T231 in 2009 and 2010 and daily maximum temperature in the station in corresponding period, multi-factors similar forecast method to select forecast sample, multivariate regression multi-mode integration MOS method, after dynamic corrected mode error and regression error, dynamic forecast equation was concluded to formulate the daily maximum temperature forecast in 24 -120 h in Wugang City from July to September. [ Result] Through selection, error correction, the daily maximum temperature equation in Wugang City from July to September was concluded. Through multiple random sampling, F test was made to pass test with significant test of 0.1. [ Conclusionl The method integrated domestic and foreign forecast mode, made full use of useful information of many modes, absorbed each others advantages, con- sidered local regional environment, lessen mode and regression error, and improved forecast accuracy.展开更多
[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extreme...[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.展开更多
Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years w...Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.展开更多
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Hom...Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.展开更多
Agricultural productivity is affected by air temperature and CO2 concentration. The relationships among grain yields of dry season irrigated rice (Boro) varieties (BRRI dhan28, BRRI dhan29 and BRRI dhan58) with increa...Agricultural productivity is affected by air temperature and CO2 concentration. The relationships among grain yields of dry season irrigated rice (Boro) varieties (BRRI dhan28, BRRI dhan29 and BRRI dhan58) with increased temperatures and CO2 concentrations were investigated for futuristic crop management in six regions of Bangladesh using CERES-Rice model (DSSATv4.6). Maximum and minimum temperature increase rates considered were 0°C, +1°C, +2°C, +3°C and +4°C and CO2 concentrations were ambient (380), 421, 538, 670 and 936 ppm. At ambient temperature and CO2 concentration, attainable grain yields varied from 6506 to 8076 kg·ha-1 depending on rice varieties. In general, grain yield reduction would be the highest (13% - 23%) if temperature rises by 4°C and growth duration reduction would be 23 - 33 days. Grain yield reductions with 1°C, 2°C and 3°C rise in temperature are likely to be compensated by increased CO2 levels of 421, 538 and 670 ppm, respectively. In future, the highest reduction in grain yield and growth duration would be in cooler region and the least in warmer saline region of the country. Appropriate adaptive techniques like shifting in planting dates, water and nitrogen fertilizer management would be needed to overcome climate change impacts on rice production.展开更多
Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warmin...Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.展开更多
[Objective] The research aimed to study the variation characteristics of winter temperature in Jinan in recent 60 years.[Method] Based on winter monthly average,maximum and minimum temperatures in the ground observati...[Objective] The research aimed to study the variation characteristics of winter temperature in Jinan in recent 60 years.[Method] Based on winter monthly average,maximum and minimum temperatures in the ground observation station of Jinan during 1951-2010,by using linear trend,5-year moving average and anomaly,the variation characteristics of winter average,maximum and minimum temperatures in Jinan in recent 60 years were analyzed.The historical evolution trend and decadal variation characteristics were discussed.[Result] Winter average,maximum and minimum temperatures in Jinan in recent 60 years all presented slow fluctuation rise trend.The rise trend was obvious.Especially the increase amplitude of minimum temperature was the maximum.It illustrated that the variation of minimum temperature was more sensitive than that of maximum temperature,and the climatic warming in winter was mainly from the contribution of minimum temperature rise.Seen from the decadal variation,cold winter mainly appeared before the 1970s.Then,it presented obvious decrease trend.Conversely,warm winter presented increase trend after the 1970s.Warm winter phenomenon slowed after 2000.Winter temperature presented stepped warming trend during 1950s-1990s.Winter average temperature presented jumped warming trend when entered into the 1990s.The temperature presented downward trend when entered into the 21st century.But winter temperature still presented rise trend as a whole.The population growth in Jinan made that urbanization process accelerated,and urban heat island effect aggravated.It was one of important factors for climate warming in Jinan.[Conclusion] The research provided theoretical basis for understanding the long-term variation trend of climate in Jinan area,and if it was consistent with the background of global climatic warming.展开更多
The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages ...The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages of four daily time-records(0000,0600,1200,and 1800 UTC;T4),eight daily time-records(0000,0300,0600,0900,1200,1500,1800,and 2100 UTC;T8),and the averages of the SAT maximum(Tmax)and minimum(Tmin),Txn,were compared based on simulated results using nested numerical intergrations with the Weather Research and Forecasting regional climate model,where only the satellite-retrieved urban surface distributions differed between two numerical experiments.The contributions from urban-related warming expressed similar intensities when using T8 and Txn,while the smallest values occurred when using T4 over different subregions of Shanghai(with the exception of areas that were defined as urban for both time periods(U2U))and Shanghai as a whole.Similar values for the changing trends could be detected over different subregions when no urban surface expansion(EX1)was detected for both T4 and Txn.The corresponding values increased under urban surface expansion(EX2)and varied over different subregions,revealing much stronger intensities over urban-surface expansion areas;the weakest intensities occurred over U2U areas.The increasing trends for EX2 and relative contributions when using T4 were smaller than those when using Txn,with the exception of those over U2U areas,which could be explained by the changing trends in Tmax and Tmin due to urban surface expansion,especially during intense urban expansion periods.展开更多
Climate change and variability, has embarked societies in Zanzibar to rely on horticulture (i.e. watermelon production) as an adaptive measure due to an unpromising situation of commonly used agricultural yields. Curr...Climate change and variability, has embarked societies in Zanzibar to rely on horticulture (i.e. watermelon production) as an adaptive measure due to an unpromising situation of commonly used agricultural yields. Currently, there is either no or scant information that describes the influence of climate changes and variability to watermelon production in Zanzibar. Thus, this study aimed to determine the influence of climate variability on the quantity of watermelon production in Zanzibar. The study used both primary and secondary datasets, which include the anecdotal information collected from interviewers’ responses from four districts of Unguja and Pemba, and climate parameters (rainfall, maximum and minimum temperature (Tmax and Tmin) acquired from Tanzania Meteorological Authority (TMA) at Zanzibar offices. Pearson correlation was used for analyzing the association between watermelon production and climate parameters, while paired t-test was applied to show the significance of the mean differences of watermelon and climate parameters for two periods of 2014-2017 and 2018-2021, respectively. Percentage changes were used to feature the extent to which the two investigated parameters affect each other. The anecdotal responses were sorted, calculated in monthly and seasonal averages, plotted and then analyzed. Results have shown a strong correlation (r = 0.8 at p ≤ 0.02, and r = 0.7) between watermelon production, Tmax and rainfall during OND, especially in Unguja, as well as Tmin during JJA (i.e. r = - 0.8 at p ≤ 0.02) in Pemba. Besides, results have shown the existence of significant differences between the means of watermelon production and climate parameter for the two stated periods, indicating that the climate parameters highly affects the watermelon production by either enhancing or declining the yields by 69% - 162% and 17% - 77%, respectively. Moreover, results have shown that respondents were aware that excess temperature intensity during dry periods can lead to high production costs due number of soil and other environmental factors. Besides the results have shown that OND seasonal rainfall and MAM Tmax had good association with watermelon production in Unguja while JJA Tmin declined the production in Pemba. Thus, the study concludes that seasonal variability of climate parameter has a significant influence on the watermelon production. The study calls for more studies on factors affecting watermelon production (e.g. soil characteristics, pest sides and manure), and recommends for climate based decision making on rain fed agricultural yields and routine monitoring of weather information.展开更多
Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum tem...Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum temperatures are studied.The results show that increasing trends of maximum temperatures are in the areas west to 95°E,and north to the Huanghe(Yellow)River, while decreasing trends exist in eastern China south to the Yellow River.Minimum temperatures are generally increasing throughout China,with dominant warming trends at the higher latitudes. This resulted in very obvious decreasing trends in diurnal temperature ranges. The periodic cycles are consistent between the maximum and minimum temperatures,but asymmetric trends are very obvious.The significant increase of minimum(nighttime)temperatures reflects the evidence of enhancement of greenhouse effect.Further analysis shows that the changes of maximum and minimum temperatures are mainly related to sunshine duration and atmospheric water vapor content.展开更多
Ecological systems in the headwaters of the Yellow River, characterized by hash natural environmental conditions, are very vulnerable to climatic change. In the most recent decades, this area greatly attracted the pub...Ecological systems in the headwaters of the Yellow River, characterized by hash natural environmental conditions, are very vulnerable to climatic change. In the most recent decades, this area greatly attracted the public's attention for its more and more deteriorating environmental conditions. Based on tree-ring samples from the Xiqing Mountain and A'nyêmagên Mountains at the headwaters of the Yellow River in the Northeastern Tibetan Plateau, we reconstructed the minimum temperatures in the winter half year over the last 425 years and the maximum temperatures in the summer half year over the past 700 years in this region. The variation of minimum temperature in the winter half year during the time span of 1578―1940 was a relatively stable trend, which was followed by an abrupt warming trend since 1941. However, there is no significant warming trend for the maximum temperature in the summer half year over the 20th century. The asymmetric variation patterns between the minimum and maximum temperatures were observed in this study over the past 425 years. During the past 425 years, there are similar variation patterns between the minimum and maximum temperatures; however, the minimum temperatures vary about 25 years earlier compared to the maximum temperatures. If such a trend of variation patterns between the minimum and maximum temperatures over the past 425 years continues in the future 30 years, the maximum temperature in this region will increase significantly.展开更多
This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then...This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then, the SUHIIs were accurately calculated based on the modified definitions of the city extents and their corresponding nearby rural areas.Finally, we explored the spatiotemporal variation of the mean, maximum, and minimum values, and ranges of SUHIIs from several aspects.The results showed that larger annual mean daytime SUHIIs occurred in hot-humid South China and cold-humid northeastern China, and the smallest occurred in arid and semiarid west China.The seasonal order of the SUHIIs was summer > spring > autumn > winter in all the temperate regions except west China.The SUHIIs were obviously larger during the rainy season than the dry season in the tropical region.Nevertheless, significant differences were not observed between the two seasons within the rainy or dry periods.During the daytime, the maximum SUHIIs mostly occurred in summer in each region, while the minimum occurred in winter.A few cold island phenomena existed during the nighttime.The maximum SUHIIs were generally significantly positively correlated with the minimum SUHIIs during the daytime, nighttime and all-day in all environmental regions throughout the year and the four seasons.Moreover, significant correlation scarcely existed between the daytime and nighttime ranges of the SUHIIs.In addition, the daytime SUHIIs were also insignificantly correlated with the nighttime SUHIIs in half of the cases.展开更多
文摘Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological observational data in a period of two years as the reference, the maximum and minimum temperature predictions of Shenyang station from the European Center for Medium-Range Weather Forecasts (ECMWF) and national intelligent grid forecasts are objectively corrected by using wavelet analysis, sliding training and other technologies. The evaluation results show that the sliding training time window of the maximum temperature is smaller than that of the minimum temperature, and their difference is the largest in August, with a difference of 2.6 days. The objective correction product of maximum temperature shows a good performance in spring, while that of minimum temperature performs well throughout the whole year, with an accuracy improvement of 97% to 186%. The correction effect in the central plains is better than in the regions with complex terrain. As for the national intelligent grid forecasts, the objective correction products have shown positive skills in predicting the maximum temperatures in spring (the skill-score reaches 0.59) and in predicting the minimum temperature at most times of the year (the skill-score reaches 0.68).
基金supported by the National Natural Science Foundation of China (Grant No. 41130103)the 973 Program (Grant Nos. 2009CB421406 and 2012CB955401)+1 种基金the US National Oceanographic and Atmospheric Administration (Grant No. EL133E09SE4048)the US National Science Foundation (Grant Nos. AGS-1015926 and AGS-1015957)
文摘In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China.
文摘[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.
文摘Maximum and minimum temperatures time series of Congo-Brazzaville are analyzed for trend and discontinuities over the period 1932 to 2010. Temperatures series show an irregular increase. A total of 8 synoptic stations show positive trends in their annual mean maximum temperature series, and 7 of them are significant, with higher trends for urban stations. Annual mean minimum temperature showed 6 stations having positive trends. This increase is in relation with observations at regional scale. However, the differences are observed between large towns (Brazzaville and Pointe-Noire), and small or rural towns (Dolisie, Sibiti, Impfondo, Djambala). Trends in diurnal temperature range (DTR) are large positive trends in maximum temperature that are mainly observed in cities. The curve of DTR shows a decreasing trend which indicates the increasing of minimum temperatures. The effects of urbanization on temperature trends are investigated. Most stations regarded as urban stations are still useful for trend analysis;being situated on the suburban of the studied cities, they are therefore, not substantially influenced by the urban heat island.
文摘[Objective] The aim was to study the refined forecast method of daily highest temperature in Wugang City from July to September. IM[ethod] By dint of ECMWF mode product and T231 in 2009 and 2010 and daily maximum temperature in the station in corresponding period, multi-factors similar forecast method to select forecast sample, multivariate regression multi-mode integration MOS method, after dynamic corrected mode error and regression error, dynamic forecast equation was concluded to formulate the daily maximum temperature forecast in 24 -120 h in Wugang City from July to September. [ Result] Through selection, error correction, the daily maximum temperature equation in Wugang City from July to September was concluded. Through multiple random sampling, F test was made to pass test with significant test of 0.1. [ Conclusionl The method integrated domestic and foreign forecast mode, made full use of useful information of many modes, absorbed each others advantages, con- sidered local regional environment, lessen mode and regression error, and improved forecast accuracy.
文摘[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.
文摘Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.
基金supported by the National Basic Research Program of China 2009CB421401 and 2006CB400503
文摘Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.
文摘Agricultural productivity is affected by air temperature and CO2 concentration. The relationships among grain yields of dry season irrigated rice (Boro) varieties (BRRI dhan28, BRRI dhan29 and BRRI dhan58) with increased temperatures and CO2 concentrations were investigated for futuristic crop management in six regions of Bangladesh using CERES-Rice model (DSSATv4.6). Maximum and minimum temperature increase rates considered were 0°C, +1°C, +2°C, +3°C and +4°C and CO2 concentrations were ambient (380), 421, 538, 670 and 936 ppm. At ambient temperature and CO2 concentration, attainable grain yields varied from 6506 to 8076 kg·ha-1 depending on rice varieties. In general, grain yield reduction would be the highest (13% - 23%) if temperature rises by 4°C and growth duration reduction would be 23 - 33 days. Grain yield reductions with 1°C, 2°C and 3°C rise in temperature are likely to be compensated by increased CO2 levels of 421, 538 and 670 ppm, respectively. In future, the highest reduction in grain yield and growth duration would be in cooler region and the least in warmer saline region of the country. Appropriate adaptive techniques like shifting in planting dates, water and nitrogen fertilizer management would be needed to overcome climate change impacts on rice production.
文摘Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.
基金Supported by Special Item of Climate Variation of China Meteorological Administration ( CCFS-11-4)
文摘[Objective] The research aimed to study the variation characteristics of winter temperature in Jinan in recent 60 years.[Method] Based on winter monthly average,maximum and minimum temperatures in the ground observation station of Jinan during 1951-2010,by using linear trend,5-year moving average and anomaly,the variation characteristics of winter average,maximum and minimum temperatures in Jinan in recent 60 years were analyzed.The historical evolution trend and decadal variation characteristics were discussed.[Result] Winter average,maximum and minimum temperatures in Jinan in recent 60 years all presented slow fluctuation rise trend.The rise trend was obvious.Especially the increase amplitude of minimum temperature was the maximum.It illustrated that the variation of minimum temperature was more sensitive than that of maximum temperature,and the climatic warming in winter was mainly from the contribution of minimum temperature rise.Seen from the decadal variation,cold winter mainly appeared before the 1970s.Then,it presented obvious decrease trend.Conversely,warm winter presented increase trend after the 1970s.Warm winter phenomenon slowed after 2000.Winter temperature presented stepped warming trend during 1950s-1990s.Winter average temperature presented jumped warming trend when entered into the 1990s.The temperature presented downward trend when entered into the 21st century.But winter temperature still presented rise trend as a whole.The population growth in Jinan made that urbanization process accelerated,and urban heat island effect aggravated.It was one of important factors for climate warming in Jinan.[Conclusion] The research provided theoretical basis for understanding the long-term variation trend of climate in Jinan area,and if it was consistent with the background of global climatic warming.
基金This work was supported by the National Natural Science Foundation of China [grant numbers 41775087 and41675149]the National Key R&D Program of China [grant number 2016YFA0600403]+2 种基金the Chinese Academy of Sciences Strategic Priority Program [grant number XDA05090206]the National Key Basic Research Program on Global Change [grant number 2011CB952003]the Jiangsu Collaborative Innovation Center for Climatic Change
文摘The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages of four daily time-records(0000,0600,1200,and 1800 UTC;T4),eight daily time-records(0000,0300,0600,0900,1200,1500,1800,and 2100 UTC;T8),and the averages of the SAT maximum(Tmax)and minimum(Tmin),Txn,were compared based on simulated results using nested numerical intergrations with the Weather Research and Forecasting regional climate model,where only the satellite-retrieved urban surface distributions differed between two numerical experiments.The contributions from urban-related warming expressed similar intensities when using T8 and Txn,while the smallest values occurred when using T4 over different subregions of Shanghai(with the exception of areas that were defined as urban for both time periods(U2U))and Shanghai as a whole.Similar values for the changing trends could be detected over different subregions when no urban surface expansion(EX1)was detected for both T4 and Txn.The corresponding values increased under urban surface expansion(EX2)and varied over different subregions,revealing much stronger intensities over urban-surface expansion areas;the weakest intensities occurred over U2U areas.The increasing trends for EX2 and relative contributions when using T4 were smaller than those when using Txn,with the exception of those over U2U areas,which could be explained by the changing trends in Tmax and Tmin due to urban surface expansion,especially during intense urban expansion periods.
文摘Climate change and variability, has embarked societies in Zanzibar to rely on horticulture (i.e. watermelon production) as an adaptive measure due to an unpromising situation of commonly used agricultural yields. Currently, there is either no or scant information that describes the influence of climate changes and variability to watermelon production in Zanzibar. Thus, this study aimed to determine the influence of climate variability on the quantity of watermelon production in Zanzibar. The study used both primary and secondary datasets, which include the anecdotal information collected from interviewers’ responses from four districts of Unguja and Pemba, and climate parameters (rainfall, maximum and minimum temperature (Tmax and Tmin) acquired from Tanzania Meteorological Authority (TMA) at Zanzibar offices. Pearson correlation was used for analyzing the association between watermelon production and climate parameters, while paired t-test was applied to show the significance of the mean differences of watermelon and climate parameters for two periods of 2014-2017 and 2018-2021, respectively. Percentage changes were used to feature the extent to which the two investigated parameters affect each other. The anecdotal responses were sorted, calculated in monthly and seasonal averages, plotted and then analyzed. Results have shown a strong correlation (r = 0.8 at p ≤ 0.02, and r = 0.7) between watermelon production, Tmax and rainfall during OND, especially in Unguja, as well as Tmin during JJA (i.e. r = - 0.8 at p ≤ 0.02) in Pemba. Besides, results have shown the existence of significant differences between the means of watermelon production and climate parameter for the two stated periods, indicating that the climate parameters highly affects the watermelon production by either enhancing or declining the yields by 69% - 162% and 17% - 77%, respectively. Moreover, results have shown that respondents were aware that excess temperature intensity during dry periods can lead to high production costs due number of soil and other environmental factors. Besides the results have shown that OND seasonal rainfall and MAM Tmax had good association with watermelon production in Unguja while JJA Tmin declined the production in Pemba. Thus, the study concludes that seasonal variability of climate parameter has a significant influence on the watermelon production. The study calls for more studies on factors affecting watermelon production (e.g. soil characteristics, pest sides and manure), and recommends for climate based decision making on rain fed agricultural yields and routine monitoring of weather information.
文摘Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum temperatures are studied.The results show that increasing trends of maximum temperatures are in the areas west to 95°E,and north to the Huanghe(Yellow)River, while decreasing trends exist in eastern China south to the Yellow River.Minimum temperatures are generally increasing throughout China,with dominant warming trends at the higher latitudes. This resulted in very obvious decreasing trends in diurnal temperature ranges. The periodic cycles are consistent between the maximum and minimum temperatures,but asymmetric trends are very obvious.The significant increase of minimum(nighttime)temperatures reflects the evidence of enhancement of greenhouse effect.Further analysis shows that the changes of maximum and minimum temperatures are mainly related to sunshine duration and atmospheric water vapor content.
基金the National Science Foundation of China (Grant Nos. 40671191 and 90502008)the Innovation Team Project (Grant No. 40421101)+2 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-05-0888)the Chinese 111 Project (Grant No. B06026)J. Gordon was supported by US National Science Foundation (Grant No. ATM-0402474)
文摘Ecological systems in the headwaters of the Yellow River, characterized by hash natural environmental conditions, are very vulnerable to climatic change. In the most recent decades, this area greatly attracted the public's attention for its more and more deteriorating environmental conditions. Based on tree-ring samples from the Xiqing Mountain and A'nyêmagên Mountains at the headwaters of the Yellow River in the Northeastern Tibetan Plateau, we reconstructed the minimum temperatures in the winter half year over the last 425 years and the maximum temperatures in the summer half year over the past 700 years in this region. The variation of minimum temperature in the winter half year during the time span of 1578―1940 was a relatively stable trend, which was followed by an abrupt warming trend since 1941. However, there is no significant warming trend for the maximum temperature in the summer half year over the 20th century. The asymmetric variation patterns between the minimum and maximum temperatures were observed in this study over the past 425 years. During the past 425 years, there are similar variation patterns between the minimum and maximum temperatures; however, the minimum temperatures vary about 25 years earlier compared to the maximum temperatures. If such a trend of variation patterns between the minimum and maximum temperatures over the past 425 years continues in the future 30 years, the maximum temperature in this region will increase significantly.
基金Under the auspices of National Natural Science Foundation of China(No.41901238,41701501)Social Science Fund of China(General Projects)(No.17BJL065)+1 种基金Key Scientific and Technological Project of Henan Province(No.192102310003)Educational Commission of Henan Province(No.2019-ZZJH-094)
文摘This study aimed to accurately study the intra-annual spatiotemporal variation in the surface urban heat island intensities(SUHIIs) in 1449 cities in China.First, China was divided into five environmental regions.Then, the SUHIIs were accurately calculated based on the modified definitions of the city extents and their corresponding nearby rural areas.Finally, we explored the spatiotemporal variation of the mean, maximum, and minimum values, and ranges of SUHIIs from several aspects.The results showed that larger annual mean daytime SUHIIs occurred in hot-humid South China and cold-humid northeastern China, and the smallest occurred in arid and semiarid west China.The seasonal order of the SUHIIs was summer > spring > autumn > winter in all the temperate regions except west China.The SUHIIs were obviously larger during the rainy season than the dry season in the tropical region.Nevertheless, significant differences were not observed between the two seasons within the rainy or dry periods.During the daytime, the maximum SUHIIs mostly occurred in summer in each region, while the minimum occurred in winter.A few cold island phenomena existed during the nighttime.The maximum SUHIIs were generally significantly positively correlated with the minimum SUHIIs during the daytime, nighttime and all-day in all environmental regions throughout the year and the four seasons.Moreover, significant correlation scarcely existed between the daytime and nighttime ranges of the SUHIIs.In addition, the daytime SUHIIs were also insignificantly correlated with the nighttime SUHIIs in half of the cases.