期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving Image Copy-Move Forgery Detection with Particle Swarm Optimization Techniques 被引量:7
1
作者 SHI Wenchang ZHAO Fei +1 位作者 QIN Bo LIANG Bin 《China Communications》 SCIE CSCD 2016年第1期139-149,共11页
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach... Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance. 展开更多
关键词 copy-move forgery detection SIFT region duplication digital image forensics
下载PDF
MobSafe:Cloud Computing Based Forensic Analysis for Massive Mobile Applications Using Data Mining 被引量:2
2
作者 Jianlin Xu Yifan Yu +4 位作者 Zhen Chen Bin Cao Wenyu Dong Yu Guo Junwei Cao 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期418-427,共10页
With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Int... With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage. 展开更多
关键词 Android platform mobile malware detection cloud computing forensic analysis machine learning redis key-value store big data hadoop distributed file system data mining
原文传递
Hidden Process Offline Forensic Based on Memory Analysis in Windows 被引量:1
3
作者 CUI Jingsong ZHANG Heng +2 位作者 QI Jing PENG Rong ZHANG Manli 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期346-354,共9页
Malicious software programs usually bypass the detection of anti-virus software by hiding themselves among apparently legitimate programs.In this work,we propose Windows Virtual Machine Introspection(WVMI)to accurat... Malicious software programs usually bypass the detection of anti-virus software by hiding themselves among apparently legitimate programs.In this work,we propose Windows Virtual Machine Introspection(WVMI)to accurately detect those hidden processes by analyzing memory data.WVMI dumps in-memory data of the target Windows operating systems from hypervisor and retrieves EPROCESS structures’address of process linked list first,and then generates Data Type Confidence Table(DTCT).Next,it traverses the memory and identifies the similarities between the nodes in process linked list and the corresponding segments in the memory by utilizing DTCT.Finally,it locates the segments of Windows’EPROCESS and identifies the hidden processes by further comparison.Through extensive experiments,our experiment shows that the WVMI detects the hidden process with high identification rate,and it is independent of different versions of Windows operating system. 展开更多
关键词 virtual machine introspection hidden process detection process linked list memory forensics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部