Canopy density and forest biomass estimation </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;&qu...Canopy density and forest biomass estimation </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> critical for </span><span style="font-family:Verdana;">understanding</span> <span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> the carbon cycle, climate change </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> detecting </span><span style="font-family:Verdana;">health</span><span style="font-family:Verdana;"> status of the forest ecosystems. This study was conducted on the coastal </span><span style="font-family:Verdana;">forests</span><span style="font-family:Verdana;"> reserves in Zanzibar and mainland Tanzania. A systematic sampling design was used to establish a total of 110 temporary sample plots in all study sites. The stratification of the forests was adopted to identify closed </span><span style="font-family:Verdana;">forest</span><span style="font-family:Verdana;"> patches with less anthropogenic effects. The study assessed the forest canopy density and above ground biomass with relative carbon stock for closed forest classes. Jozani Chwaka Bay National Park in Zanzibar recorded higher average canopy densities of 63% followed by Ngezi (46%), Pugu forests (26%) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Kazimzumbwi (16%). However, </span><span style="font-family:Verdana;">Ngezi</span><span style="font-family:Verdana;"> forest had higher forest biomass than all study sites with </span><span style="font-family:Verdana;">the overall</span><span style="font-family:Verdana;"> mean AGB of 138.5 </span><span style="font-family:Verdana;">tAGB</span><span style="font-family:Verdana;">/ha equivalent to carbon stock of 67.9 tC/ha. Tree species, </span><i><span style="font-family:Verdana;">Bombax</span></i> <i><span style="font-family:Verdana;">rhodognaphala</span></i><span style="font-family:Verdana;"> (Msufi </span><span style="font-family:Verdana;">mwitu</span><span style="font-family:Verdana;">) and </span><i><span style="font-family:Verdana;">Antiaris</span></i> <i><span style="font-family:Verdana;">toxicaria</span></i><span style="font-family:Verdana;"> (Mgulele) recorded </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">highest biomass of 1099</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">tABG/ha and 703 </span><span style="font-family:Verdana;">tAGB</span><span style="font-family:Verdana;">/ha (equivalent to 538 </span><span style="font-family:Verdana;">tC</span><span style="font-family:Verdana;">/ha and (345 tC/ha)</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">)</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The study revealed that about 35% of the total closed forest patches at Pugu FR </span><span style="font-family:Verdana;">w</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> covered by lower canopy density which accounted about 490 ha. Kazimzumbwi FR was dominated by lower canopy density which represented about 64% of the total forest cover area (1750 ha).展开更多
The restoration of forest landscape has drawn much attention since thecatastrophic fire took place on the northern slope of Great Xing'an Mountains in 1987. Forest canopydensity, which has close relation to forest...The restoration of forest landscape has drawn much attention since thecatastrophic fire took place on the northern slope of Great Xing'an Mountains in 1987. Forest canopydensity, which has close relation to forest productivity, was selected as a key factor to find howmuch the forest quality was changed 13 years after fire, and how fire severity, regeneration way andterrain factors influenced the restoration of forest canopy density, based on forest inventory datain China, and using Kendall Bivariate Correlation Analysis, and Distances Correlation Analysis. Theresults showed that fire severity which was inversely correlated with forest canopy density gradewas an initial factor among all that selected. Regeneration way which did not remarkably affectforest canopy density restoration in short period, may shorten the cycle of forest succession andpromote the forest productivity of conophorium in the future. Among the three terrain factors, theeffect of slope was the strongest, the position on slope was the second and the aspect was the last.展开更多
Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is un...Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is unclear how the forest canopy density and epixylic vegetation growth affect the nutrient concentrations in deadwood.Methods:We measured the concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca),sodium(Na),magnesium(Mg),and manganese(Mn)in experimentally exposed decaying logs placed in gaps,at the edge of gaps,and under the closed canopy during a four-year decomposition experiment in a Subalpine Faxon fir forest(Abies fargesii var.faxoniana)on the eastern Qinghai-Tibetan Plateau,China.To assess the effect of the epixylic vegetation,we experimentally removed it from half of the logs used in the study.Results:Under open canopy conditions in the gap and at the edge,the concentrations for most of the nutrients in the bark and the highly decayed wood were lower than under the closed canopy.The effect of the epixylic treatment on nutrient concentrations for all but K and Na in barks varied with the decay classes.Significantly lower concentrations of N,P,Ca,and Mn following the removal of epixylic vegetation were observed in the wood of decay class IV.Epixylic vegetation significantly increased most nutrient concentrations for decaying barks and wood under open canopy conditions.In contrast,epixylic vegetation had no or minimal effects under the closed canopy.Conclusions:Forest canopy density and epixylic vegetation significantly alter the nutrient concentrations in decaying logs.Open canopies likely accelerate the rate of nutrient cycling between the epixylic vegetation and decaying logs in subalpine forests.展开更多
Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio...Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.展开更多
The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China,...The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.展开更多
We used the forest inventory data of Gansu Province, China to quantify carbon storage and carbon density changes by regional forest cover and by typical forest types in 1979-2006. Total forest area increased from 1.77...We used the forest inventory data of Gansu Province, China to quantify carbon storage and carbon density changes by regional forest cover and by typical forest types in 1979-2006. Total forest area increased from 1.77 x 106 ha in 1979 to 2.32 x 106 ha in 2006, and the forest carbon storage, estimated by the continuous biomass expansion factor method, increased from 83.14 to 100.66 Tg, equivalent to a carbon accumulation rate of 0.0071 Tg per year during the period. Mean carbon densities were 44.83-48.50 t ha-1 and the values decreased slightly over the time period. Natural forests generated greater car- bon storage and density than did plantations. By regression analysis, forest stand age was an important parameter incarbon density studies. We developed various regression equations between carbon density and stand age for major types of natural forests and plantations in the region. Our results can be used for proper selection of re-forestation species and efficient management of young and middle-aged forests, offering great potential for future carbon sequestra- tion, especially in arid and semi-arid regions.展开更多
Mountain forests are more prone to environmental predispositions(EPs)than submountain ones.While remote sensing of mountain forests enables instantaneous damage mapping,the investigation of the causes requires field d...Mountain forests are more prone to environmental predispositions(EPs)than submountain ones.While remote sensing of mountain forests enables instantaneous damage mapping,the investigation of the causes requires field data.However,a local field or regionally modeled environmental characteristics influence remote data evaluation differently.This study focused on the evaluation of EPs effects damaging mountain forests between various spatial resolutions during environmental change.The evaluation was divided into managed and natural forests in the Hruby Jeseník Mts.(Czech Republic;240-1491 m a.s.l.;50.082°N,17.231°E).Damage was assessed through the discrimination analysis of the normalised difference vegetation index(NDVI)by MODIS VI during alternating drought and flood periods 2003-2014.The local environmental influence was assessed using the discrimination function(DF)separability of forest damage in the training sets.The regional influence was assessed through map algebra estimated via the DF and a forest decline spatial model based on EPs from differences between risk growth conditions and biomass fuzzy sets.Management,EPs and soil influenced forest NDVI at different levels.The management afflicted the NDVI more than the EPs.The EPs afflicted the NDVI more than the soil groups.Strong winters and droughts had a greater influence on the NDVI than the flood events,with the winter of 2005/2006 inverting the DF direction,and the 2003 drought increasing differences in managed forest biomass and decreasing differences in natural forest biomasses.More than 50% of declining managed forests in the training sets occurred on Leptosols,Podzols and Histosols.On a regional scale,the soil influence was eliminated by multiple predispositions.The EPs influenced 96% of natural forest and 65% of managed forest,though managed forest damage was more evident.The mountain forest NDVI decline was dependent on both management and risk predispositions.展开更多
Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation whic...Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation which is easier to point out, monitoring forest degradation is quite a challenge since there is no universal definition and thus no clear monitoring methods apart from the canopy cover change. This research, therefore, sought to look at the degradation trends in the Mau forest complex between 1995-2020 with the aim of finding out whether monitoring canopy density changes over time and quantifying these changes in terms of biomass loss could be a good approach in monitoring forest degradation. Forest Canopy Density (FCD) model was adopted focusing on using vegetation indices describing biophysical conditions of Vegetation, Shadow and Bareness to monitor changes in canopy density as a parameter for describing forest degradation in the forest blocks of Maasai Mau and Olpusimoru in Mau forest complex. Results indicated how different vegetation indices responded to changes in the vegetation density and eventually changes in the canopy density values which were converted in terms of biomass loss. The forest Canopy Density model proved to be a good tool for monitoring forest degradation since it combines different biophysical indices with different characteristics capturing what is happening below the canopy.展开更多
There are many uncertainties in the estimation of forest carbon sequestration in China, especially in Liaoning Province where various forest inventory data have not been fully utilized. By using forest inventory data,...There are many uncertainties in the estimation of forest carbon sequestration in China, especially in Liaoning Province where various forest inventory data have not been fully utilized. By using forest inventory data, we estimated forest vegetation carbon stock of Liaoning Province between 1993 and 2005. Results showed that forest biomass carbon stock increased from 68.91 Tg C in 1993 to 97.51 Tg C in 2005, whereas mean carbon density increased from 18.48 Mg·ha^-1 C to 22.33 Mg·ha^-1 C. The carbon storage of young- and middle-aged forests increased by 22.1 Tg C and 5.95 Tg C, but that of mature forests has decreased by 0.25 Tg C. The carbon stock and density of forests in Liaon- ing Province varied greatly in space: larger carbon storage and higher carbon density were primarily found in the east area. The spatial distribution of carbon density was determined by many factors, of which human activities played an important role. The forests in Liaoning Province played a positive role as a sink of atmospheric carbon dioxide. The carbon fixation ability of forests in this area was primarily derived from forest plantation and the total forest carbon sequestration can be enhanced by expanding young- and middle-aged forests.展开更多
[Objectives] The aim was to study the artificial cultivation of Bletilla striata to realize large scale and standardization planting. [Methods] The comparison tests were conducted on B. striata with different canopy d...[Objectives] The aim was to study the artificial cultivation of Bletilla striata to realize large scale and standardization planting. [Methods] The comparison tests were conducted on B. striata with different canopy densities of the Magnolia officinalis forests,different compound planting densities and different tending measures and management. [Results] When the stand canopy density was 0. 4-0. 6,the per unit yield of B. striata was 5. 4%,6. 8% higher than that at the canopy density of less than 0. 4 and more than 0. 6,respectively. When the planting density was 30 cm × 30 cm,the per unit yield increased by 16. 1%,12. 0%,13. 1% respectively compared with the planting density of 20 cm × 20 cm,25 cm × 25 cm,35 cm × 35 cm. When B. striata was planted from October to November,the per unit yield was 5. 6% higher than that planted from December to January of the following year,and 21. 3% higher than that from February to March of the second year. When farmyard manure was applied during the cultivation,the per unit yield was 31. 7% and 18. 4% higher than the application of chemical fertilizer and compound fertilizer. When weeding 4 times per year,the per unit yield increased by 240. 1%,137. 0% and 43. 9% respectively from that weeding 1 times,2 times,3 times per year. [Conclusions]When planting B. striata,the stand canopy density of 0. 4-0. 6 could make it receive absolutely shelters and the lighting conditions required for the growth,thereby bringing in high emergence rate,good growth potential and high yield. The best planting effect of B. striata could achieve by planting from October to November with the planting density of 30 cm × 30 cm,which can play the maximum benefit of individual plants. Moreover,weeding 4 times per year combined with the use of farmyard manure can promote the development and growth of tubers,which can greatly improve the yield of B. striata.展开更多
One of the basic parameters in forest management planning is detailed knowledge of growing stock,information collected by forest inventory.Sampling methods must be accurate,inexpensive,and be easy to implement in the ...One of the basic parameters in forest management planning is detailed knowledge of growing stock,information collected by forest inventory.Sampling methods must be accurate,inexpensive,and be easy to implement in the field.This study presents a new sampling method called branching transect for use in the Iranian Zagros forests and similar forests.Features of the new method include greater accuracy,easy implementation in nature,simplicity of statistical calculations,and low cost.In this method,transect is used,which includes some subtransects(side branches).The length of the main transect,side branches,number of trees measured in each side branch,and the number of sub-branches in this method are changeable based on homogeneity,heterogeneity,and density of a forest.In this study,based on the density and heterogeneity of the forest area studied,20-m transects with four and eight side branches were used.Sampling plots(Transects)in four inventory networks(100 m×100 m,100 m×150 m,150 m×150 m and 100 m×200 m)were implemented in the GIS environment.The results of this sampling method were compared to the results of total inventory(100%count)in terms of accuracy,precision(t-test),and inventory error percentage.Branching transect results were statistially similar to total inventory counts in all cases.The results show that this method of estimating density and canopy per hectare can be used in Zagros forests and similar forests.展开更多
Based on approaches deduced from previous research findings and empirical observations from density control experiments, genetic worth effect response models were developed for black spruce (Picea mariana (Mill) BSP.)...Based on approaches deduced from previous research findings and empirical observations from density control experiments, genetic worth effect response models were developed for black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) plantations. The models accounted for the increased rate of stand development arising from the planting of genetically-improved stock through temporal adjustments to the species-specific site-based mean dominant height-age functions. The models utilized a relative height growth modifier based on known estimates of genetic gain. The models also incorporated a phenotypic juvenile age-mature age correlation function in order to account for the intrinsic temporal decline in the magnitude of genetic worth effects throughout the rotation. Integrating the functions into algorithmic variants of structural stand density management models produced stand development patterns that were consistent with axioms of even-aged stand dynamics.展开更多
文摘Canopy density and forest biomass estimation </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> critical for </span><span style="font-family:Verdana;">understanding</span> <span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> the carbon cycle, climate change </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> detecting </span><span style="font-family:Verdana;">health</span><span style="font-family:Verdana;"> status of the forest ecosystems. This study was conducted on the coastal </span><span style="font-family:Verdana;">forests</span><span style="font-family:Verdana;"> reserves in Zanzibar and mainland Tanzania. A systematic sampling design was used to establish a total of 110 temporary sample plots in all study sites. The stratification of the forests was adopted to identify closed </span><span style="font-family:Verdana;">forest</span><span style="font-family:Verdana;"> patches with less anthropogenic effects. The study assessed the forest canopy density and above ground biomass with relative carbon stock for closed forest classes. Jozani Chwaka Bay National Park in Zanzibar recorded higher average canopy densities of 63% followed by Ngezi (46%), Pugu forests (26%) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Kazimzumbwi (16%). However, </span><span style="font-family:Verdana;">Ngezi</span><span style="font-family:Verdana;"> forest had higher forest biomass than all study sites with </span><span style="font-family:Verdana;">the overall</span><span style="font-family:Verdana;"> mean AGB of 138.5 </span><span style="font-family:Verdana;">tAGB</span><span style="font-family:Verdana;">/ha equivalent to carbon stock of 67.9 tC/ha. Tree species, </span><i><span style="font-family:Verdana;">Bombax</span></i> <i><span style="font-family:Verdana;">rhodognaphala</span></i><span style="font-family:Verdana;"> (Msufi </span><span style="font-family:Verdana;">mwitu</span><span style="font-family:Verdana;">) and </span><i><span style="font-family:Verdana;">Antiaris</span></i> <i><span style="font-family:Verdana;">toxicaria</span></i><span style="font-family:Verdana;"> (Mgulele) recorded </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">highest biomass of 1099</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">tABG/ha and 703 </span><span style="font-family:Verdana;">tAGB</span><span style="font-family:Verdana;">/ha (equivalent to 538 </span><span style="font-family:Verdana;">tC</span><span style="font-family:Verdana;">/ha and (345 tC/ha)</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">)</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The study revealed that about 35% of the total closed forest patches at Pugu FR </span><span style="font-family:Verdana;">w</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ere</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> covered by lower canopy density which accounted about 490 ha. Kazimzumbwi FR was dominated by lower canopy density which represented about 64% of the total forest cover area (1750 ha).
基金This paper was supported by the National Natural Science Foundation of China (No. 30270225, 40331008)
文摘The restoration of forest landscape has drawn much attention since thecatastrophic fire took place on the northern slope of Great Xing'an Mountains in 1987. Forest canopydensity, which has close relation to forest productivity, was selected as a key factor to find howmuch the forest quality was changed 13 years after fire, and how fire severity, regeneration way andterrain factors influenced the restoration of forest canopy density, based on forest inventory datain China, and using Kendall Bivariate Correlation Analysis, and Distances Correlation Analysis. Theresults showed that fire severity which was inversely correlated with forest canopy density gradewas an initial factor among all that selected. Regeneration way which did not remarkably affectforest canopy density restoration in short period, may shorten the cycle of forest succession andpromote the forest productivity of conophorium in the future. Among the three terrain factors, theeffect of slope was the strongest, the position on slope was the second and the aspect was the last.
基金jointly funded by the following grants:The National Natural Science Foundation of China(Nos.32071554,31870602,31901295)the National Key R&D Program of China(No.2017YFC0503906)the Program of Sichuan Excellent Youth Sci-Tech Foundation(No.2020JDJQ0052).
文摘Background:Deadwood and the associated epixylic vegetation influence nutrient cycles in forest ecosystems.Open canopies strongly regulate deadwood decomposition and disrupt epixylic vegetation on logs.However,it is unclear how the forest canopy density and epixylic vegetation growth affect the nutrient concentrations in deadwood.Methods:We measured the concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca),sodium(Na),magnesium(Mg),and manganese(Mn)in experimentally exposed decaying logs placed in gaps,at the edge of gaps,and under the closed canopy during a four-year decomposition experiment in a Subalpine Faxon fir forest(Abies fargesii var.faxoniana)on the eastern Qinghai-Tibetan Plateau,China.To assess the effect of the epixylic vegetation,we experimentally removed it from half of the logs used in the study.Results:Under open canopy conditions in the gap and at the edge,the concentrations for most of the nutrients in the bark and the highly decayed wood were lower than under the closed canopy.The effect of the epixylic treatment on nutrient concentrations for all but K and Na in barks varied with the decay classes.Significantly lower concentrations of N,P,Ca,and Mn following the removal of epixylic vegetation were observed in the wood of decay class IV.Epixylic vegetation significantly increased most nutrient concentrations for decaying barks and wood under open canopy conditions.In contrast,epixylic vegetation had no or minimal effects under the closed canopy.Conclusions:Forest canopy density and epixylic vegetation significantly alter the nutrient concentrations in decaying logs.Open canopies likely accelerate the rate of nutrient cycling between the epixylic vegetation and decaying logs in subalpine forests.
基金the National Natural Science Foundation of China(Nos.U20A2089 and 41971152)the Research Foundation of the Department of Natural Resources of Hunan Province(No.20230138ST)to SLthe open research fund of Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin,Ministry of Natural Resources(No.2023005)to YZ。
文摘Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.
文摘The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.
基金financially supported by the Chinese Academy of Sciences through the Strategic Priority Research Program(XDA05050202)
文摘We used the forest inventory data of Gansu Province, China to quantify carbon storage and carbon density changes by regional forest cover and by typical forest types in 1979-2006. Total forest area increased from 1.77 x 106 ha in 1979 to 2.32 x 106 ha in 2006, and the forest carbon storage, estimated by the continuous biomass expansion factor method, increased from 83.14 to 100.66 Tg, equivalent to a carbon accumulation rate of 0.0071 Tg per year during the period. Mean carbon densities were 44.83-48.50 t ha-1 and the values decreased slightly over the time period. Natural forests generated greater car- bon storage and density than did plantations. By regression analysis, forest stand age was an important parameter incarbon density studies. We developed various regression equations between carbon density and stand age for major types of natural forests and plantations in the region. Our results can be used for proper selection of re-forestation species and efficient management of young and middle-aged forests, offering great potential for future carbon sequestra- tion, especially in arid and semi-arid regions.
基金the support by the Project LM2018123 Cze COS of the Ministry of Education,Youth and Sports of the Czech Republic。
文摘Mountain forests are more prone to environmental predispositions(EPs)than submountain ones.While remote sensing of mountain forests enables instantaneous damage mapping,the investigation of the causes requires field data.However,a local field or regionally modeled environmental characteristics influence remote data evaluation differently.This study focused on the evaluation of EPs effects damaging mountain forests between various spatial resolutions during environmental change.The evaluation was divided into managed and natural forests in the Hruby Jeseník Mts.(Czech Republic;240-1491 m a.s.l.;50.082°N,17.231°E).Damage was assessed through the discrimination analysis of the normalised difference vegetation index(NDVI)by MODIS VI during alternating drought and flood periods 2003-2014.The local environmental influence was assessed using the discrimination function(DF)separability of forest damage in the training sets.The regional influence was assessed through map algebra estimated via the DF and a forest decline spatial model based on EPs from differences between risk growth conditions and biomass fuzzy sets.Management,EPs and soil influenced forest NDVI at different levels.The management afflicted the NDVI more than the EPs.The EPs afflicted the NDVI more than the soil groups.Strong winters and droughts had a greater influence on the NDVI than the flood events,with the winter of 2005/2006 inverting the DF direction,and the 2003 drought increasing differences in managed forest biomass and decreasing differences in natural forest biomasses.More than 50% of declining managed forests in the training sets occurred on Leptosols,Podzols and Histosols.On a regional scale,the soil influence was eliminated by multiple predispositions.The EPs influenced 96% of natural forest and 65% of managed forest,though managed forest damage was more evident.The mountain forest NDVI decline was dependent on both management and risk predispositions.
文摘Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation which is easier to point out, monitoring forest degradation is quite a challenge since there is no universal definition and thus no clear monitoring methods apart from the canopy cover change. This research, therefore, sought to look at the degradation trends in the Mau forest complex between 1995-2020 with the aim of finding out whether monitoring canopy density changes over time and quantifying these changes in terms of biomass loss could be a good approach in monitoring forest degradation. Forest Canopy Density (FCD) model was adopted focusing on using vegetation indices describing biophysical conditions of Vegetation, Shadow and Bareness to monitor changes in canopy density as a parameter for describing forest degradation in the forest blocks of Maasai Mau and Olpusimoru in Mau forest complex. Results indicated how different vegetation indices responded to changes in the vegetation density and eventually changes in the canopy density values which were converted in terms of biomass loss. The forest Canopy Density model proved to be a good tool for monitoring forest degradation since it combines different biophysical indices with different characteristics capturing what is happening below the canopy.
基金supported by Fujian Provincial Science and Technology Project (2010H0020)Environmental Public-benefit Project (201009055) by providing financial assistance
文摘There are many uncertainties in the estimation of forest carbon sequestration in China, especially in Liaoning Province where various forest inventory data have not been fully utilized. By using forest inventory data, we estimated forest vegetation carbon stock of Liaoning Province between 1993 and 2005. Results showed that forest biomass carbon stock increased from 68.91 Tg C in 1993 to 97.51 Tg C in 2005, whereas mean carbon density increased from 18.48 Mg·ha^-1 C to 22.33 Mg·ha^-1 C. The carbon storage of young- and middle-aged forests increased by 22.1 Tg C and 5.95 Tg C, but that of mature forests has decreased by 0.25 Tg C. The carbon stock and density of forests in Liaon- ing Province varied greatly in space: larger carbon storage and higher carbon density were primarily found in the east area. The spatial distribution of carbon density was determined by many factors, of which human activities played an important role. The forests in Liaoning Province played a positive role as a sink of atmospheric carbon dioxide. The carbon fixation ability of forests in this area was primarily derived from forest plantation and the total forest carbon sequestration can be enhanced by expanding young- and middle-aged forests.
文摘[Objectives] The aim was to study the artificial cultivation of Bletilla striata to realize large scale and standardization planting. [Methods] The comparison tests were conducted on B. striata with different canopy densities of the Magnolia officinalis forests,different compound planting densities and different tending measures and management. [Results] When the stand canopy density was 0. 4-0. 6,the per unit yield of B. striata was 5. 4%,6. 8% higher than that at the canopy density of less than 0. 4 and more than 0. 6,respectively. When the planting density was 30 cm × 30 cm,the per unit yield increased by 16. 1%,12. 0%,13. 1% respectively compared with the planting density of 20 cm × 20 cm,25 cm × 25 cm,35 cm × 35 cm. When B. striata was planted from October to November,the per unit yield was 5. 6% higher than that planted from December to January of the following year,and 21. 3% higher than that from February to March of the second year. When farmyard manure was applied during the cultivation,the per unit yield was 31. 7% and 18. 4% higher than the application of chemical fertilizer and compound fertilizer. When weeding 4 times per year,the per unit yield increased by 240. 1%,137. 0% and 43. 9% respectively from that weeding 1 times,2 times,3 times per year. [Conclusions]When planting B. striata,the stand canopy density of 0. 4-0. 6 could make it receive absolutely shelters and the lighting conditions required for the growth,thereby bringing in high emergence rate,good growth potential and high yield. The best planting effect of B. striata could achieve by planting from October to November with the planting density of 30 cm × 30 cm,which can play the maximum benefit of individual plants. Moreover,weeding 4 times per year combined with the use of farmyard manure can promote the development and growth of tubers,which can greatly improve the yield of B. striata.
文摘One of the basic parameters in forest management planning is detailed knowledge of growing stock,information collected by forest inventory.Sampling methods must be accurate,inexpensive,and be easy to implement in the field.This study presents a new sampling method called branching transect for use in the Iranian Zagros forests and similar forests.Features of the new method include greater accuracy,easy implementation in nature,simplicity of statistical calculations,and low cost.In this method,transect is used,which includes some subtransects(side branches).The length of the main transect,side branches,number of trees measured in each side branch,and the number of sub-branches in this method are changeable based on homogeneity,heterogeneity,and density of a forest.In this study,based on the density and heterogeneity of the forest area studied,20-m transects with four and eight side branches were used.Sampling plots(Transects)in four inventory networks(100 m×100 m,100 m×150 m,150 m×150 m and 100 m×200 m)were implemented in the GIS environment.The results of this sampling method were compared to the results of total inventory(100%count)in terms of accuracy,precision(t-test),and inventory error percentage.Branching transect results were statistially similar to total inventory counts in all cases.The results show that this method of estimating density and canopy per hectare can be used in Zagros forests and similar forests.
文摘Based on approaches deduced from previous research findings and empirical observations from density control experiments, genetic worth effect response models were developed for black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) plantations. The models accounted for the increased rate of stand development arising from the planting of genetically-improved stock through temporal adjustments to the species-specific site-based mean dominant height-age functions. The models utilized a relative height growth modifier based on known estimates of genetic gain. The models also incorporated a phenotypic juvenile age-mature age correlation function in order to account for the intrinsic temporal decline in the magnitude of genetic worth effects throughout the rotation. Integrating the functions into algorithmic variants of structural stand density management models produced stand development patterns that were consistent with axioms of even-aged stand dynamics.