期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
STUDIES ON FOREST WATER CYCLING
1
作者 周晓峰 王传宽 +1 位作者 李庆夏 金永岩 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1995年第3期89-95,共7页
Principal ideas, research approaches and installations in both Liangshui and Maoershan Ecological Stations were diseussed. Significance of comparability and synchronous detennination in research methods were stressed.... Principal ideas, research approaches and installations in both Liangshui and Maoershan Ecological Stations were diseussed. Significance of comparability and synchronous detennination in research methods were stressed. Comparison analysis was done on the results gained from diferent methods. Adaptive mechanisms of Mongolian oak (Quercus mongolica) to drought and unproductive sites wer expounded through hydrological cycling studies. Surface runoff and flood peak were decreased and the developing processes of flood peak were postponed or delayed because of the presence of huge forest canopy and forest floor. However, the conclusions of forest influences on total runoff,especially in spring and in the dry season t are significant to agricultul practices in notheast China and turned out contrary for satershed sizes or different approaches, which should be studied further. 展开更多
关键词 forest water cycling Controlled paired-watershed approach Runoff plot Comparbility Synchronous determination
下载PDF
Thinning intensity aff ects carbon sequestration and release in seasonal freeze–thaw areas 被引量:2
2
作者 Tong Gao Xinyu Song +3 位作者 Yunze Ren Hui Liu Hangfeng Qu Xibin Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期993-1006,共14页
To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varyi... To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%. 展开更多
关键词 forest carbon cycle Seasonal freeze–thaw THINNING Climate change
下载PDF
Modeling Long-term Forest Carbon Spatiotemporal Dynamics With Historical Climate and Recent Remote Sensing Data 被引量:1
3
作者 Jing M.Chen 《Science Foundation in China》 CAS 2010年第1期30-56,共27页
Forests have long life cycles of up to several hundred years and longer.They also have very different growth rates at different stages of their life cycles.Therefore the carbon cycle in forest ecosystems has long time... Forests have long life cycles of up to several hundred years and longer.They also have very different growth rates at different stages of their life cycles.Therefore the carbon cycle in forest ecosystems has long time scales,making it necessary to consider forest age in estimating the spatiotemporal dynamics of carbon sinks in forests.The focus of this article is to review methods for combining recent remote sensing data with historical climate data for estimating the forest carbon source and sink distribution.Satellite remote sensing provides useful data for the land surface in recent decades. The information derived from remote sensing data can be used for short-term forest growth estimation and for mapping forest stand age for longterm simulations.For short-term forest growth estimation, remote sensing can provide forest structural parameters as inputs to process-based models,including big-leaf,two-leaf,and multi-layered models. These models use different strategies to upscale from leaf to canopy,and their reliability and suitability for remote sensing applications will be examined here.For long-term forest carbon cycle estimation, the spatial distribution of the forest growth rate(net primary productivity,NPP) modeled using remote sensing data in recent years is a critical input.This input can be combined with a forest age map to simulate the historical variation of NPP under the influence of climate and atmospheric changes. Another important component of the forest carbon cycle is heterotrophic respiration in the soil,which depends on the sizes of soil carbon pools as well as climate conditions.Methods for estimating the soil carbon spatial distribution and its separation into pools are described.The emphasis is placed on how to derive the soil carbon pools from NPP estimation in current years with consideration of forest carbon dynamics associated with stand age variation and climate and atmospheric changes.The role of disturbance in the forest carbon cycle and the effects of forest regrowth after disturbance are also considered in this review.An example of national forest carbon budget estimation in Canada is given at the end.It illustrates the importance of forest stand age structure in estimating the national forest carbon budgets and the effects of climate and atmospheric changes on the forest carbon cycle. 展开更多
关键词 forest carbon cycle forest age DISTURBANCE remote sensing NBP NPP NEP
原文传递
Symbiotic mycorrhizal types affect patterns of tree aboveground and belowground C allocation in Northeast China 被引量:1
4
作者 Qinggui Wang Guoyong Yan +3 位作者 Xi Luo Guancheng Liu Honglin Wang Yajuan Xing 《Ecological Processes》 SCIE EI CSCD 2023年第1期379-387,共9页
Background Given the ubiquitous nature of mycorrhizal symbioses,different symbiotic fungi have obvious differences in structure and function,which may affect associated tree aboveground and belowground C allocation dy... Background Given the ubiquitous nature of mycorrhizal symbioses,different symbiotic fungi have obvious differences in structure and function,which may affect associated tree aboveground and belowground C allocation dynamics.However,the mechanisms underlying tree aboveground and belowground C allocation and its response to symbiotic mycorrhizal types and other factors(e.g.,resource availability)remain poorly understood.Results We used forest inventory data to explore the potential mechanism of tree aboveground and belowground C allocation patterns in Northeast China.Our results showed that tree-fungal symbioses were related to the patterns of tree C allocation.The ratio of aboveground to belowground C pool was significantly higher in ectomycorrhizal(EM)-associated trees than that in arbuscular mycorrhizal(AM)-associated trees.Symbiotic mycorrhizal types were associ-ated with the responses of tree aboveground and belowground C allocation to different factors,such as mean annual precipitation(MAP)and mean annual temperature(MAT).Almost all factors significantly increased aboveground C allocation in AM-associated trees but significantly decreased it in EM-associated trees.Moreover,after controlling the other factors,the effects of climate factors(MAT and MAP)on the C allocation of AM-and EM-associated trees were similar.Increases in MAT and MAP significantly increased belowground and aboveground C allocation,respectively.Conclusions Our results demonstrate symbiotic mycorrhizal types play an important role in controlling tree aboveground and belowground C allocation and dynamics. 展开更多
关键词 Symbiotic mycorrhizal type Tree carbon allocation pattern forest carbon cycling Plant-climate interaction Temperate forest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部