期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mapping Deciduous Broad-leaved Forested Swamps Using ALOS/Palsar Data
1
作者 BIAN Hongfeng YAN Tingting +2 位作者 ZHANG Zhengxiang HE Chunguang SHENG Lianxi 《Chinese Geographical Science》 SCIE CSCD 2016年第3期352-365,共14页
Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structu... Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable. 展开更多
关键词 forested swamp Palsar radar images forest hydrological characteristics multi-temporal technique decision tree classifier
下载PDF
Application of an expert knowledge system in the study of forest spatial patterns
2
作者 LI Chun-yan ZHANG Xiao-li 《Forestry Studies in China》 CAS 2008年第1期52-55,共4页
For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhousha... For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhoushan, Zhejiang Province, we established a test area in the local Chinese pine community. Landsat5 TM images from 1991 and 2006 were integrated with auxiliary data from field investigation and spectral data as additional sources of information. A method of expert knowledge classifier was applied to establish the expert knowledge dataset of the main vegetation cover types from which we obtained a forest type distribution map. The spatial patterns and stability of the forest, before and after the invasion of the pine wood nematode, were analyzed in terms of community patterns. The results indicated that the predominant coniferous forest type changed to a mixed forest. As a result, the forest structure became complex and the interaction between coniferous forest patches became weakened over the period from 1991 to 2006. Therefore, the resistance of the forest eco-system to plant diseases and insect pests and the stability of forest eco-system enhanced. 展开更多
关键词 expert knowledge system TM image forest pattern stability
下载PDF
Exploiting Human Pose and Scene Information for Interaction Detection
3
作者 Manahil Waheed Samia Allaoua Chelloug +4 位作者 Mohammad Shorfuzzaman Abdulmajeed Alsufyani Ahmad Jalal Khaled Alnowaiser Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第3期5853-5870,共18页
Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has at... Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset. 展开更多
关键词 Artificial intelligence daily activities human interactions human pose information image foresting transform scene feature information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部