Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This ...The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This region is eager for being managed because of its fragileecological conditions. Therefore, the basic approach to realize the harmonious developmentof ecological and economic benefits is the rational arrangement of farming, forestry and pas-ure land according to the characteristics of land resources of this region.展开更多
There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With...There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With changes of socio-economic factors as well as the geophysical conditions, there are dramatic changes on the spatial patterns of forest area. In this sense, it is of great significance to shed light on the dynamics of forest area changes to find the underlining reasons for shaping the changing patterns of forest area in Northeast China. To explore the dynamics of forest area change in Northeast China, an econometric model is developed which is composed of three equations identifying forestry production, conversion from open forest to closed forest and conversion from other land uses to closed forest so as to explore the impacts on the forest area changes from demographic, social, economic, location and geophysical factors. On this basis, we employ the Dynamics of Land System (DLS) model to simulate land-use conversions between forest area and non-forest cover and the land-use conversions within the sub-classes of forest area for the period 2000-2020 under business as usual scenario, environmental protection scenario and economic growth scenario. The simulation results show that forest area will expand continuously and there exist various kinds of changing patterns for the sub-classes of forest area, for example, closed forest will expand continuously and open forest and shrub will decrease a little bit, while area of other forest will keep intact. The research results provide meaningful decision-making information for conserving and exploiting the forest resources and makJng out the planning for forestry production Jn the Northeast China region.展开更多
This study is being carried out in the cross-border area of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-fam...This study is being carried out in the cross-border area of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the tri-national Dja-Odzala-Minkébé (TRIDOM), subject of a cooperation agreement between Cameroon, Congo a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">nd Gabon in 2005. The purpose of this study is to analyze the dynamics of changes in land use in the context of cross-border cooperation. Geographic information systems and remote sensing were used to produce the various land use maps. For this purpose, the MERIS satellite images for the periods 1992, 2005 and 2018 were used. The exploration of the different images and the field visits made it possible to identify the following six land use classes: dense forests, degraded/deforested forests, savannas, swamp forests, buildings and bare soils, water surfaces. It emerges that the TRIDOM landscape is mainly occupied by dense forests which represent 97.02%, 96.72% and 96.52% respectively in 1992, 2005 and 2018. Then, degraded/deforested forests and savannas which would correspond to cultivation areas and fallow land only represent respectively 1.06% and 0.68% of the landscape in 1992. This proportion in 2005 is respectively 1.22% and 0.77%, whereas in 2018, it is respectively 1.36% and 0.81% of the massif. The landscape of TRIDOM has not experienced any significant land use change during the period after the signing of the cooperation agreement. Historical rates of deforestation are low during the period under study. They are estimated at 0.042% and 0.030% respectively for the period 1992-2005 and the period 2005-2018. These low rates of deforestation seem to be due to the measures taken to secure and sustainably manage the massif taken by the three countries, the low population density in this area and the still difficult level of accessibility of a large part of the massif.展开更多
Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest los...Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.展开更多
Forest land is the essential and important natural resource that provides strong support for human survival and development. Research on forest land changes at the county level about its characteristics, rules, and sp...Forest land is the essential and important natural resource that provides strong support for human survival and development. Research on forest land changes at the county level about its characteristics, rules, and spatial patterns is, therefore, important for regional resource protection and the sustainable development of the social economy. In this study we selected the GIS and Geoda software package to explore the spatial disparities of forest land changes at the Beijing-Tianjin-Hebei area county level, based on the global and local spatial autocorrelation analyses of exploratory spatial data. The results show that: 1) during 1985-2000, the global spatial autocorrelation of forest land change is significant in the study area. The global Moran's I value is 0.3122 for the entire time period and indicates significant positive spatial correlation (p 〈 0.05). Moran's I value of forest land change decreases from 0.3084 at the time stage I to 0.3024 at the time stage II; 2) the spatial clustering characteristics of forest land changes appear on the whole in Beijing- Tianjin-Hebei area. Moran's 1 value decreases from the time stage I to time stage II, which means that trend of spatial clustering of forest land change is weakened in the Beijing-Tianjin-Hebei area; 3) the grid map of the local Moran's I for each county reflects local spatial homo- geneity of forest land change, which means that spatial clustering about regions of high value and low value is especially significant. The regions with "High-High" correlation are mainly located in the north hilly area. However, the regions with "Low-Low" correlation were distributed in the middle of the study area. Therefore, protection strategies and concrete measures should be put in place for each regional cluster in the study area.展开更多
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
文摘The "Three Norths" (Northeastern China, Northern China, and Northwestern China)Shelter forest area is located in the north part of china. The area of this region occupies41% of the total area of China. This region is eager for being managed because of its fragileecological conditions. Therefore, the basic approach to realize the harmonious developmentof ecological and economic benefits is the rational arrangement of farming, forestry and pas-ure land according to the characteristics of land resources of this region.
文摘There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With changes of socio-economic factors as well as the geophysical conditions, there are dramatic changes on the spatial patterns of forest area. In this sense, it is of great significance to shed light on the dynamics of forest area changes to find the underlining reasons for shaping the changing patterns of forest area in Northeast China. To explore the dynamics of forest area change in Northeast China, an econometric model is developed which is composed of three equations identifying forestry production, conversion from open forest to closed forest and conversion from other land uses to closed forest so as to explore the impacts on the forest area changes from demographic, social, economic, location and geophysical factors. On this basis, we employ the Dynamics of Land System (DLS) model to simulate land-use conversions between forest area and non-forest cover and the land-use conversions within the sub-classes of forest area for the period 2000-2020 under business as usual scenario, environmental protection scenario and economic growth scenario. The simulation results show that forest area will expand continuously and there exist various kinds of changing patterns for the sub-classes of forest area, for example, closed forest will expand continuously and open forest and shrub will decrease a little bit, while area of other forest will keep intact. The research results provide meaningful decision-making information for conserving and exploiting the forest resources and makJng out the planning for forestry production Jn the Northeast China region.
文摘This study is being carried out in the cross-border area of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the tri-national Dja-Odzala-Minkébé (TRIDOM), subject of a cooperation agreement between Cameroon, Congo a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">nd Gabon in 2005. The purpose of this study is to analyze the dynamics of changes in land use in the context of cross-border cooperation. Geographic information systems and remote sensing were used to produce the various land use maps. For this purpose, the MERIS satellite images for the periods 1992, 2005 and 2018 were used. The exploration of the different images and the field visits made it possible to identify the following six land use classes: dense forests, degraded/deforested forests, savannas, swamp forests, buildings and bare soils, water surfaces. It emerges that the TRIDOM landscape is mainly occupied by dense forests which represent 97.02%, 96.72% and 96.52% respectively in 1992, 2005 and 2018. Then, degraded/deforested forests and savannas which would correspond to cultivation areas and fallow land only represent respectively 1.06% and 0.68% of the landscape in 1992. This proportion in 2005 is respectively 1.22% and 0.77%, whereas in 2018, it is respectively 1.36% and 0.81% of the massif. The landscape of TRIDOM has not experienced any significant land use change during the period after the signing of the cooperation agreement. Historical rates of deforestation are low during the period under study. They are estimated at 0.042% and 0.030% respectively for the period 1992-2005 and the period 2005-2018. These low rates of deforestation seem to be due to the measures taken to secure and sustainably manage the massif taken by the three countries, the low population density in this area and the still difficult level of accessibility of a large part of the massif.
基金The Modares Tarbiat University of Iran funded this work
文摘Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.
文摘Forest land is the essential and important natural resource that provides strong support for human survival and development. Research on forest land changes at the county level about its characteristics, rules, and spatial patterns is, therefore, important for regional resource protection and the sustainable development of the social economy. In this study we selected the GIS and Geoda software package to explore the spatial disparities of forest land changes at the Beijing-Tianjin-Hebei area county level, based on the global and local spatial autocorrelation analyses of exploratory spatial data. The results show that: 1) during 1985-2000, the global spatial autocorrelation of forest land change is significant in the study area. The global Moran's I value is 0.3122 for the entire time period and indicates significant positive spatial correlation (p 〈 0.05). Moran's I value of forest land change decreases from 0.3084 at the time stage I to 0.3024 at the time stage II; 2) the spatial clustering characteristics of forest land changes appear on the whole in Beijing- Tianjin-Hebei area. Moran's 1 value decreases from the time stage I to time stage II, which means that trend of spatial clustering of forest land change is weakened in the Beijing-Tianjin-Hebei area; 3) the grid map of the local Moran's I for each county reflects local spatial homo- geneity of forest land change, which means that spatial clustering about regions of high value and low value is especially significant. The regions with "High-High" correlation are mainly located in the north hilly area. However, the regions with "Low-Low" correlation were distributed in the middle of the study area. Therefore, protection strategies and concrete measures should be put in place for each regional cluster in the study area.