期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Soil CH_4 fluxes response to understory removal and N-fixing species addition in four forest plantations in Southern China 被引量:1
1
作者 李海防 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期301-310,397,共11页
CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal a... CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal and N-fixing species (Cassia alata) addition, on soil CH4 fluxes in four forest plantations in southern China. Fluxes of CH4 were measured in Eucalyptus urophylla plantation (B1), Acacia crassi-carpa plantation (B2), 10-native-species-mixed plantation (B3), and 30-native-species-mixed plantation (B4) stands using the static chamber method in Southern China. Four forest management treatments, includ-ing (1) understory removal and replacement with C. alata (UR+CA); (2) understory removal only (UR); (3) C. alata addition only (CA); and (4) control without any disturbances (CK), were applied in the four forest plantations. The results showed that plantation types had a significant effect on soil CH4 fluxes. B1 and B2 tended to be CH4 consumers, while B3 and B4 inclined to be CH4 producers. UR decreased CH4 fluxes by providing a more optimal soil temperature and moisture regime for mi-croorganism community and increasing substrate mineralization. How-ever, CA enhanced CH4 fluxes in B1 and B2 for N-fixing function of C. alata while lowered CH4 fluxes in B3 and B4. Soil CH4 flux rate was significantly related to soil temperature and moisture conditions in the top 10-cm soil layer. Furthermore, the quality of substrates, such as Soil Organic Carbon (SOC) and mineral N might also be important driving factors for CH4 fluxes. This study improved our understanding on CH4 fluxes in plantations under different management practices such as UR and CA. 展开更多
关键词 soil CH4 fluxes forest management practices UNDERSTORY
下载PDF
Comparative analysis of thinning techniques in pine forests
2
作者 Maame Esi Hammond Radek Pokorný +1 位作者 Simon Abugre Augustine Gyedu 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第4期1145-1156,共12页
Thinning is a necessary and complex forestry activity.The complexity increases due to theoretical disagreements,contradictory recommendations,and errors of modern practice,which require confirmation through longtime e... Thinning is a necessary and complex forestry activity.The complexity increases due to theoretical disagreements,contradictory recommendations,and errors of modern practice,which require confirmation through longtime experiments.This article presents a summary of experimental results from plantations established 20–30 years ago and explains concepts of the theory,methods,and regime of thinning in permanent sample plots of pine stands in Gatchinsky forest of the Leningrad region.The research results allow for the clarification of growth patterns and age dynamics of pine stands subject to heavy,low thinning,as well as the results of applying the crown(high)thinning technique and a mixed treatment.A combined thinning and fertilization could improve wood quality and yield compared to conventional methods.Of particular scientific importance is the analysis of change in tree diameter classes during growth and after thinning.The research results allow for optimizing the treatment regime in pine plantations and reducing labor intensity by increasing the intensity of thinning and reducing the number of techniques. 展开更多
关键词 forest management practices forest stand Selective thinning SILVICULTURE
下载PDF
Forest soil CO_2 fluxes as a function of understory removal and N-fixing species addition 被引量:3
3
作者 Haifang Li Shenglei Fu +1 位作者 Hongting Zhao Hanping Xia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第6期949-957,共9页
We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation... We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation(ACp),10-species-mixed plantation(Tp),and 30-species-mixed plantation(THp) using the static chamber method in southern China.Four forest management treatments,including(1) understory removal(UR);(2) C.alata addition(CA);(3) understory removal and replacement with C.alata(UR+CA);and(4) control without any disturbances(CK),were applied in the above four forest plantations with three replications for each treatment.The results showed that soil CO2 fluxes rates remained at a high level during the rainy season(from April to September),followed by a rapid decrease after October reaching a minimum in February.Soil CO2 fluxes were significantly higher(P 〈 0.01) in EUp(132.6 mg/(m2.hr)) and ACp(139.8 mg/(m2.hr)) than in Tp(94.0 mg/(m2.hr)) and THp(102.9 mg/(m2.hr)).Soil CO2 fluxes in UR and CA were significantly higher(P 〈 0.01) among the four treatments,with values of 105.7,120.4,133.6 and 112.2 mg/(m2.hr) for UR+CA,UR,CA and CK,respectively.Soil CO2 fluxes were positively correlated with soil temperature(P 〈 0.01),soil moisture(P 〈 0.01),NO3?-N(P 〈 0.05),and litterfall(P 〈 0.01),indicating that all these factors might be important controlling variables for soil CO2 fluxes.This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices. 展开更多
关键词 soil C02 fluxes forest management practices understory removal N-fixing species addition forest plantation
原文传递
Solid-State 13C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Fractions in a Forest Ecosystem Subjected to Prescribed Burning and Thinning 被引量:1
4
作者 thilini d.ranatunga zhongqi he +1 位作者 kamala n.bhat junyan zhong 《Pedosphere》 SCIE CAS CSCD 2017年第5期901-911,共11页
Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM). In this study, surface softs from field plots in the Bankhead National ... Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM). In this study, surface softs from field plots in the Bankhead National Forest, Alabama, USA, were used to investigate possible SOM transformations induced by thinning and burning. Elemental analysis and solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize SOM fractions in whole soils, humic substances, and density fractions. Our data revealed that the changes in SOM fractions due to the repeated burning carried out in the forest ecosystem studied were involved mainly with alkyl C, O-alkyl C, and carbohydrate functional groups, implying that most prominent reactions that occurred involved dehydrogenation, de-oxygenation, and decarboxylation. In addition, burning and thinning might have also affected the distribution and composition of free and occluded particulate SOM fractions. The limited structural changes in SOM fractions suggested that low-intensity prescribed fire in the forest ecosystem studied will not create major structural changes in SOM fractions. 展开更多
关键词 density fractionation forest fires forest management practices forest soils fulvic acids humic acids HUMIN particulateorganic matter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部