An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved probl...Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved problem.It is still not clear how much vegetation can be sustained by the forest lands with given water,energy and soil conditions,i.e.,the carrying capacity for vegetation(CCV)of forest lands,which is the prerequisite for planning and implementing forest restoration projects.Here,we used a simplified method to evaluate the CCV across forest lands nationwide.Specifically,based on leaf area index(LAI)dataset,we use boosted regression tree and multiple linear regression model to analyze the CCV during 2001-2020 and 2021-2030 and explore the contribution of environmental factors.We find that there are three typical regions with lower CCV located in the Loess Plateau and the southern region of the Inner Mongolia Plateau,the Hengduan Mountain region,and the Tianshan Mountains.More importantly,the vegetation in the regions near the dry-wet climate transition zone show excess local carrying capacity for vegetation over the past two decades and they are more susceptible to potential climatic stress.In comparison,in the Greater Khingan Mountains and Hengduan Mountains,there is high potential to improve the forest growth.Temperature,precipitation and soil affects the CCV by shaping the vegetation in the optimal range.This indicates that more consideration should be given to restrictions of regional environmental constraints when planning afforestation and forest management.This study has important implications for guiding future forest scheme in China.展开更多
This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation...This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.展开更多
This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solu...This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.展开更多
CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal a...CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal and N-fixing species (Cassia alata) addition, on soil CH4 fluxes in four forest plantations in southern China. Fluxes of CH4 were measured in Eucalyptus urophylla plantation (B1), Acacia crassi-carpa plantation (B2), 10-native-species-mixed plantation (B3), and 30-native-species-mixed plantation (B4) stands using the static chamber method in Southern China. Four forest management treatments, includ-ing (1) understory removal and replacement with C. alata (UR+CA); (2) understory removal only (UR); (3) C. alata addition only (CA); and (4) control without any disturbances (CK), were applied in the four forest plantations. The results showed that plantation types had a significant effect on soil CH4 fluxes. B1 and B2 tended to be CH4 consumers, while B3 and B4 inclined to be CH4 producers. UR decreased CH4 fluxes by providing a more optimal soil temperature and moisture regime for mi-croorganism community and increasing substrate mineralization. How-ever, CA enhanced CH4 fluxes in B1 and B2 for N-fixing function of C. alata while lowered CH4 fluxes in B3 and B4. Soil CH4 flux rate was significantly related to soil temperature and moisture conditions in the top 10-cm soil layer. Furthermore, the quality of substrates, such as Soil Organic Carbon (SOC) and mineral N might also be important driving factors for CH4 fluxes. This study improved our understanding on CH4 fluxes in plantations under different management practices such as UR and CA.展开更多
Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and...Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and pedo-diversity, influencing nutrient cycles, and maintain- ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid- ered critical to develop ecologically sustainable forest management sys- tems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature re- viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade- tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa- rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.展开更多
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with ...It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.展开更多
Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest...Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest management for mitigating global climate change and safeguarding terrestrial water balance.However,there are some tradeoff s between gain in forest productivity and ecosystem water balance.We conducted literature review based on published articles for learned knowledge on forest carbon fi xation and hydrological regulations.Some knowledge gaps and research needs are identifi ed by examining the inter-connections between forest carbon sequestration and water conservation.Past researches have helped gain basic understanding of the mechanisms and controls of forest carbon fi xation and hydrological regulations as two separate issues.Tools and approaches are well established for quantifying and monitoring forest carbon and hydrological issues,operating at diff erent spatial and temporal scales.There are knowledge gaps on how to design aff orestation schemes facilitating enhanced ecosystem services in forest carbon sequestration and water conservation.For the top-down planning of aff orestation in regions where water availability is anticipated to be problematic,the questions of how much and where to plant for given land availability,known environmental implications,and sustained regional development and livelihood need to be addressed.For local management considerations,the questions of what and how to plant prevail.Eff orts are needed in joint studies of forest carbon sequestration and water conservation functionalities,specifi cally in relation to establishment and management of planted forests aiming for delivering regulatory ecosystem services in carbon sequestration,water conservation and other social values.We propose an integrated framework with dual consideration of carbon sequestration and water conservation in forest management for future research pursue.展开更多
Forest fire is one of the major causes of forest loss and therefore one of the main constraints for sustainable forest management worldwide.Identifying the driving factors and understanding the contribution of each fa...Forest fire is one of the major causes of forest loss and therefore one of the main constraints for sustainable forest management worldwide.Identifying the driving factors and understanding the contribution of each factor are essential for the management of forest fire occurrence.The objective of this study is to identify variables that are spatially related to the occurrence and incidence of the forest fire in the State of Durango,Mexico.For this purpose,data from forest fire records for a five-year period were analyzed.The spatial correlations between forest fire occurrence and intensity of land use,susceptibility of vegetation,temperature,precipitation and slope were tested by Geographically Weighted Regression(GWR) method,under an Ordinary Least Square estimator.Results show that the spatial pattern of the forest fire in the study area is closely correlated with the intensity of land use,and land use change is one of the main explanatory variables.In addition,vegetation type and precipitation are also the main driving factors.The fitting model indicates obvious link between the variables.Forest fire was found to be the consequence of a particular combination of the environmental factors,and when these factors coexist with human activities,there is high probability of forest fire occurrence.Mandatory regulation of human activities is a key strategy for forest fire prevention.展开更多
Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carb...Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carbon estimates are scarce globally, particularly in Mexico. The objective of this study was to simulate future land-cover scenarios for the Sierra Madre Oriental in Mexico, by analyzing past forest cover changes. Another objective was to estimate stored carbon in the two study areas. These objectives involve the generation of information that could be useful inputs to anti-deforestation public policy such as the REDD+ strategy. Remote sensing was used to measure land cover change and estimate carbon stocks. Satellite images from 2015, 2000 and 1986 were used, and Dinamica EGO freeware generatedmodels of future projections. Between 1986 and 2015, 5171 ha of forest were converted to pasture. The annual deforestation rates were –1.5% for Tlanchinol and –1.3% for the San Bartolo Tutotepec sites. Distance to roads and marginalization were highly correlated with deforestation. By 2030, an estimated 3608 ha of forest in these sites will have been converted to pasture. Stored carbon was estimated at 16.35 Mg C ha-1 for the Tlanchinol site and 12.7 Mg C ha-1 for the San Bartolo site. In the Sierra Madre Oriental deforestation due to land cover change(–1.4%) is higher than levels reported worldwide. Besides having high values of stored carbon(14.5 Mg C ha-1), these forests have high biodiversity. The models' outputs show that the deforestation process will continue if action is not taken to avoid the expansion of livestock pasturing. This can be done by paying incentives for forest conservation to the owners of the land. The results suggest that REDD+ is currently the most viable strategy for reducing deforestation rates in tropical montane cloud forests in Sierra Madre Oriental.展开更多
Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest ...Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest managers are thus challenged by the need to define strategies that may protect the soil while addressing the demand for other ecosystem services. Our emphasis is on the development of an approach to assess the impact of silvicultural practices and forest management models on soil erosion risks under climate change. Specifically, we consider the annual variation of the cover-management factor(C) in the Revised Universal Soil Loss Equation over a range of alternative forest management models to estimate the corresponding annual soil losses, under both current and changing climate conditions. We report and discuss results of an application of this approach to a forest area in Northwestern Portugal where erosion control is the most relevant water-related ecosystem service.Results: Local climate change scenarios will contribute to water erosion processes, mostly by rainfall erosivity increase.Different forest management models provide varying levels of soil protection by trees, resulting in distinct soil loss potential.Conclusions: Results confirm the suitability of the proposed approach to address soil erosion concerns in forest management planning. This approach may help foresters assess management models and the corresponding silvicultural practices according to the water-related services they provide.展开更多
Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinni...Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinning was assessed across seven thinning intensities(0,10,15,20,25,30 and 35%)in a low-quality secondary forest in NE China over a ten-year period.Thinning aff ected the carbon storage of trees,and shrub,herb,and soil layers(P<0.05).It fi rst increased and then decreased as thinning intensity increased,reaching its maximum at 30%thinning.Carbon storage of the soil accounted for more than 64%of the total carbon stored in the ecosystem.It was highest in the upper 20-cm soil layer.Thinning increased tree species diversity while decreasing shrub and herb diversities(P<0.05).Redundancy analysis and a correlation heat map showed that carbon storage of tree and shrub layers was positively correlated with tree diversity but negatively with herb diversity,indicating that the increase in tree diversity increased the carbon storage of natural forest ecosystems.Although thinning decreased shrub and herb diversities,it increased the carbon storage of the overall ecosystem and tree species diversity of secondary forest.Maximum carbon storage and the highest tree diversity were observed at a thinning intensity of 30%.This study provides evidence for the ecological management of natural and secondary forests and improvement of ecosystem carbon sinks and biodiversity.展开更多
Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fie...Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fields as well as terrestrial ecosystems.The carbon sink capacity of plantation forests contributes to the mitigation of climate change.Plantation forests throughout the world are intensively managed,and there is an urgent need to evaluate the effects of such management on long-term carbon dynamics.Methods:We assessed the carbon cycling patterns of ecosystems characterized by three typical plantation species(Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.),oak(Cyclobalanopsis glauca(Thunb.)Oerst.),and pine(Pinus massoniana Lamb.))in Lishui,southern China,by using an integrated biosphere simulator(IBIS)tuned with localized parameters.Then,we used the state-and-transition simulation model(STSM)to study the effects of active forest management(AFM)on carbon storage by combining forest disturbance history and carbon cycle regimes.Results:1)The carbon stock of the oak plantation was lower at an early age(<50 years)but higher at an advanced age(>50 years)than that of the Chinese fir and pine plantations.2)The carbon densities of the pine and Chinese fir plantations peaked at 70 years(223.36 Mg⋅ha^(‒1))and 64 years(232.04 Mg⋅ha^(‒1)),respectively,while the carbon density in the oak plantation continued increasing(>100 years).3)From 1989 to 2019,the total carbon pools of the three plantation ecosystems followed an upward trend(an annual increase of 0.16–0.22 Tg C),with the largest proportional increase in the aboveground biomass carbon pool.4)AFM increased the recovery of carbon storage after 1996 and 2009 in the pine and Chinese fir plantations,respectively,but did not result in higher growth in the oak plantation.5)The proposed harvest planning is reasonable and conducive to maximizing the carbon sequestration capacity of the forest.Conclusions:This study provides an example of a carbon cycle coupling model that is potentially suitable for simulating China's plantation forest ecosystems and supporting carbon accounting to monitor peak CO_(2)emissions and reach carbon neutrality.展开更多
Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing...Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.展开更多
The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifyin...The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.展开更多
The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics ...The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics of forest resources data, a component geographic information system (ComGIS) was developed for forest resources management. The system embeds a GIS ActiveX control MapObjects (Inc. ESRI) on Visual C++ platform. System design, data organization and achieving way were studied and expatiated by taking Xigangzi Forestry Centre as study object. The system has many useful functions,, such as adding and display of various map layers, zoom of map by wheeling mouse, attribute and spatial data querying, map auto roaming, features rendering based on the spatial trait of data, label controlling through attribute data band with vector graph, as well as output of 'Column chart' for showing the result of statistics. At the same time, parts of source codes are attached.展开更多
Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Inter...Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Internet Age, this paper explores the importance and the feasibility of setting up Forest Resources Management Information System based on the WEBGIS. At the same time, based on the experience of our study, the paper explores the function, structure and method of developing the Forest Resources Management Information System based on WEBGIS. With the technology of WEBGIS, the Forest Resources Management Information System with data from Huoditang Farm was set up, which makes a great impact on forest resources management. So setting up the Forest Resources Management Information System based on WEBGIS is a trend of forest resources management. In the course of setting up this system, we must pay attention to following questions: 1) unify data standard and information encoding; 2) change mind.展开更多
Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forest...Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.展开更多
Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation len...Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods: Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results: The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions: The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50 % lower than in Romania, but the higher harvesting rate resulted in more than doubling wood production. Considering the mitigation effects of climate change by forests, it emerges that the increase in standing volume of forests in Romania is smaller than the additional harvest in Germany which serves fossil fuel substitution.展开更多
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
基金supported by the Joint CAS-MPG Research Project(Grant No.HZXM20225001MI)the National Natural Science Founda-tion of China(NSFC)(Grant No.41991234)the National Science Foundation(Grant No.1903722).
文摘Ecological restoration projects implemented over the past 20 years have substantially increased forest coverage in China,but the high tree mortality of new afforestation forest remains a challenging but unsolved problem.It is still not clear how much vegetation can be sustained by the forest lands with given water,energy and soil conditions,i.e.,the carrying capacity for vegetation(CCV)of forest lands,which is the prerequisite for planning and implementing forest restoration projects.Here,we used a simplified method to evaluate the CCV across forest lands nationwide.Specifically,based on leaf area index(LAI)dataset,we use boosted regression tree and multiple linear regression model to analyze the CCV during 2001-2020 and 2021-2030 and explore the contribution of environmental factors.We find that there are three typical regions with lower CCV located in the Loess Plateau and the southern region of the Inner Mongolia Plateau,the Hengduan Mountain region,and the Tianshan Mountains.More importantly,the vegetation in the regions near the dry-wet climate transition zone show excess local carrying capacity for vegetation over the past two decades and they are more susceptible to potential climatic stress.In comparison,in the Greater Khingan Mountains and Hengduan Mountains,there is high potential to improve the forest growth.Temperature,precipitation and soil affects the CCV by shaping the vegetation in the optimal range.This indicates that more consideration should be given to restrictions of regional environmental constraints when planning afforestation and forest management.This study has important implications for guiding future forest scheme in China.
文摘This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.
文摘This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.
基金This research was supported by the Natural Science Foundation of China (30630015, 30771704)
文摘CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal and N-fixing species (Cassia alata) addition, on soil CH4 fluxes in four forest plantations in southern China. Fluxes of CH4 were measured in Eucalyptus urophylla plantation (B1), Acacia crassi-carpa plantation (B2), 10-native-species-mixed plantation (B3), and 30-native-species-mixed plantation (B4) stands using the static chamber method in Southern China. Four forest management treatments, includ-ing (1) understory removal and replacement with C. alata (UR+CA); (2) understory removal only (UR); (3) C. alata addition only (CA); and (4) control without any disturbances (CK), were applied in the four forest plantations. The results showed that plantation types had a significant effect on soil CH4 fluxes. B1 and B2 tended to be CH4 consumers, while B3 and B4 inclined to be CH4 producers. UR decreased CH4 fluxes by providing a more optimal soil temperature and moisture regime for mi-croorganism community and increasing substrate mineralization. How-ever, CA enhanced CH4 fluxes in B1 and B2 for N-fixing function of C. alata while lowered CH4 fluxes in B3 and B4. Soil CH4 flux rate was significantly related to soil temperature and moisture conditions in the top 10-cm soil layer. Furthermore, the quality of substrates, such as Soil Organic Carbon (SOC) and mineral N might also be important driving factors for CH4 fluxes. This study improved our understanding on CH4 fluxes in plantations under different management practices such as UR and CA.
基金supported through funds provided by Regione Calabria within the project"Robinwood Plus"-Interreg IV C
文摘Treefall gap, canopy opening caused by the death of one or more trees, is the dominant form of disturbance in many forest systems worldwide. Gaps play an important role in forest ecology helping to pre- serve bio- and pedo-diversity, influencing nutrient cycles, and maintain- ing the complex structure of the late-successional forests. Over the last 30 years, numerous reviews have been written describing gap dynamics. Here we synthesize current understanding on gap dynamics relating to tree regeneration with particular emphasis on gap characteristics consid- ered critical to develop ecologically sustainable forest management sys- tems and to conserve native biodiversity. Specifically, we addressed the question: how do gaps influence forest structure? From the literature re- viewed, the size of gaps induces important changes in factors such as light intensity, soil humidity and soil biological properties that influence tree species regeneration and differ in gaps of different sizes. Shade- tolerant species can colonize small gaps; shade-intolerant species need large gaps for successful regeneration. Additionally, gap dynamics differ between temperate, boreal, and tropical forests, showing the importance of climate differences in driving forest regeneration. This review summa- rizes information of use to forest managers who design cutting regimes that mimic natural disturbances and who must consider forest structure, forest climate, and the role of natural disturbance in their designs.
基金Under the auspices of International Science and Technology Cooperation Project(No.2010DFA22480)Major State Basic Research Development Program of China(No.2010CB833503)
文摘It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
基金Ministry of Science and Technology of China(Grant No.2016YFC0502104).
文摘Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues.Optimization of the dual services is the ultimate goal in forest management for mitigating global climate change and safeguarding terrestrial water balance.However,there are some tradeoff s between gain in forest productivity and ecosystem water balance.We conducted literature review based on published articles for learned knowledge on forest carbon fi xation and hydrological regulations.Some knowledge gaps and research needs are identifi ed by examining the inter-connections between forest carbon sequestration and water conservation.Past researches have helped gain basic understanding of the mechanisms and controls of forest carbon fi xation and hydrological regulations as two separate issues.Tools and approaches are well established for quantifying and monitoring forest carbon and hydrological issues,operating at diff erent spatial and temporal scales.There are knowledge gaps on how to design aff orestation schemes facilitating enhanced ecosystem services in forest carbon sequestration and water conservation.For the top-down planning of aff orestation in regions where water availability is anticipated to be problematic,the questions of how much and where to plant for given land availability,known environmental implications,and sustained regional development and livelihood need to be addressed.For local management considerations,the questions of what and how to plant prevail.Eff orts are needed in joint studies of forest carbon sequestration and water conservation functionalities,specifi cally in relation to establishment and management of planted forests aiming for delivering regulatory ecosystem services in carbon sequestration,water conservation and other social values.We propose an integrated framework with dual consideration of carbon sequestration and water conservation in forest management for future research pursue.
基金Under the auspices of Mexican National Council for Science and Technology (No 2008-01-87972)
文摘Forest fire is one of the major causes of forest loss and therefore one of the main constraints for sustainable forest management worldwide.Identifying the driving factors and understanding the contribution of each factor are essential for the management of forest fire occurrence.The objective of this study is to identify variables that are spatially related to the occurrence and incidence of the forest fire in the State of Durango,Mexico.For this purpose,data from forest fire records for a five-year period were analyzed.The spatial correlations between forest fire occurrence and intensity of land use,susceptibility of vegetation,temperature,precipitation and slope were tested by Geographically Weighted Regression(GWR) method,under an Ordinary Least Square estimator.Results show that the spatial pattern of the forest fire in the study area is closely correlated with the intensity of land use,and land use change is one of the main explanatory variables.In addition,vegetation type and precipitation are also the main driving factors.The fitting model indicates obvious link between the variables.Forest fire was found to be the consequence of a particular combination of the environmental factors,and when these factors coexist with human activities,there is high probability of forest fire occurrence.Mandatory regulation of human activities is a key strategy for forest fire prevention.
基金support with doctorate fellowship CONACy T(No.266708)Postgraduate Sciences in Biodiversity and Conservation of the Center for Biological Research,UAEH
文摘Tropical montane cloud forest is one of the ecosystems with the highest biomass worldwide, representing an important carbon store. Globally its deforestation index is –1.1%, but in Mexico it is higher than –3%. Carbon estimates are scarce globally, particularly in Mexico. The objective of this study was to simulate future land-cover scenarios for the Sierra Madre Oriental in Mexico, by analyzing past forest cover changes. Another objective was to estimate stored carbon in the two study areas. These objectives involve the generation of information that could be useful inputs to anti-deforestation public policy such as the REDD+ strategy. Remote sensing was used to measure land cover change and estimate carbon stocks. Satellite images from 2015, 2000 and 1986 were used, and Dinamica EGO freeware generatedmodels of future projections. Between 1986 and 2015, 5171 ha of forest were converted to pasture. The annual deforestation rates were –1.5% for Tlanchinol and –1.3% for the San Bartolo Tutotepec sites. Distance to roads and marginalization were highly correlated with deforestation. By 2030, an estimated 3608 ha of forest in these sites will have been converted to pasture. Stored carbon was estimated at 16.35 Mg C ha-1 for the Tlanchinol site and 12.7 Mg C ha-1 for the San Bartolo site. In the Sierra Madre Oriental deforestation due to land cover change(–1.4%) is higher than levels reported worldwide. Besides having high values of stored carbon(14.5 Mg C ha-1), these forests have high biodiversity. The models' outputs show that the deforestation process will continue if action is not taken to avoid the expansion of livestock pasturing. This can be done by paying incentives for forest conservation to the owners of the land. The results suggest that REDD+ is currently the most viable strategy for reducing deforestation rates in tropical montane cloud forests in Sierra Madre Oriental.
基金ALTERFOR project,“Alternative models and robust decision-making for future forest management”,H2020-ISIB-2015-2/grant agreement No. 676754,funded by European Union Seventh Framework ProgrammeSUFORUN project,‘Models and decision SUpport tools for integrated FOrest policy development under global change and associated Risk and UNcertainty’ funded by the European Union’s H2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement number 691149+2 种基金BIOECOSYS project,“Forest ecosystem management decision-making methods an integrated bioeconomic approach to sustainability”(LISBOA-01-0145-FEDER-030391,PTDC/ASP-SIL/30391/2017)MedFOR,Master Programme on Mediterranean Forestry and Natural Resources Management (Erasmus+Erasmus Mundus Joint Master Degrees,Project 20171917)Centro de Estudos Florestais,research unit funded by Fundacao para a Ciência e a Tecnologia I.P.(FCT),Portugal within UIDB/00239/2020。
文摘Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest managers are thus challenged by the need to define strategies that may protect the soil while addressing the demand for other ecosystem services. Our emphasis is on the development of an approach to assess the impact of silvicultural practices and forest management models on soil erosion risks under climate change. Specifically, we consider the annual variation of the cover-management factor(C) in the Revised Universal Soil Loss Equation over a range of alternative forest management models to estimate the corresponding annual soil losses, under both current and changing climate conditions. We report and discuss results of an application of this approach to a forest area in Northwestern Portugal where erosion control is the most relevant water-related ecosystem service.Results: Local climate change scenarios will contribute to water erosion processes, mostly by rainfall erosivity increase.Different forest management models provide varying levels of soil protection by trees, resulting in distinct soil loss potential.Conclusions: Results confirm the suitability of the proposed approach to address soil erosion concerns in forest management planning. This approach may help foresters assess management models and the corresponding silvicultural practices according to the water-related services they provide.
基金supported by the Applied Technology Research and Development program of Heilongjiang Province(GA19C006)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202112).
文摘Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinning was assessed across seven thinning intensities(0,10,15,20,25,30 and 35%)in a low-quality secondary forest in NE China over a ten-year period.Thinning aff ected the carbon storage of trees,and shrub,herb,and soil layers(P<0.05).It fi rst increased and then decreased as thinning intensity increased,reaching its maximum at 30%thinning.Carbon storage of the soil accounted for more than 64%of the total carbon stored in the ecosystem.It was highest in the upper 20-cm soil layer.Thinning increased tree species diversity while decreasing shrub and herb diversities(P<0.05).Redundancy analysis and a correlation heat map showed that carbon storage of tree and shrub layers was positively correlated with tree diversity but negatively with herb diversity,indicating that the increase in tree diversity increased the carbon storage of natural forest ecosystems.Although thinning decreased shrub and herb diversities,it increased the carbon storage of the overall ecosystem and tree species diversity of secondary forest.Maximum carbon storage and the highest tree diversity were observed at a thinning intensity of 30%.This study provides evidence for the ecological management of natural and secondary forests and improvement of ecosystem carbon sinks and biodiversity.
基金This work was jointly funded by the following grants:the National Natural Science Foundation of China(31971577,31670552)the DOD ESTCP Program(RC_201703)the PAPD(Priority Academic Program Development)of Jiangsu Provincial Universities(2017).
文摘Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fields as well as terrestrial ecosystems.The carbon sink capacity of plantation forests contributes to the mitigation of climate change.Plantation forests throughout the world are intensively managed,and there is an urgent need to evaluate the effects of such management on long-term carbon dynamics.Methods:We assessed the carbon cycling patterns of ecosystems characterized by three typical plantation species(Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.),oak(Cyclobalanopsis glauca(Thunb.)Oerst.),and pine(Pinus massoniana Lamb.))in Lishui,southern China,by using an integrated biosphere simulator(IBIS)tuned with localized parameters.Then,we used the state-and-transition simulation model(STSM)to study the effects of active forest management(AFM)on carbon storage by combining forest disturbance history and carbon cycle regimes.Results:1)The carbon stock of the oak plantation was lower at an early age(<50 years)but higher at an advanced age(>50 years)than that of the Chinese fir and pine plantations.2)The carbon densities of the pine and Chinese fir plantations peaked at 70 years(223.36 Mg⋅ha^(‒1))and 64 years(232.04 Mg⋅ha^(‒1)),respectively,while the carbon density in the oak plantation continued increasing(>100 years).3)From 1989 to 2019,the total carbon pools of the three plantation ecosystems followed an upward trend(an annual increase of 0.16–0.22 Tg C),with the largest proportional increase in the aboveground biomass carbon pool.4)AFM increased the recovery of carbon storage after 1996 and 2009 in the pine and Chinese fir plantations,respectively,but did not result in higher growth in the oak plantation.5)The proposed harvest planning is reasonable and conducive to maximizing the carbon sequestration capacity of the forest.Conclusions:This study provides an example of a carbon cycle coupling model that is potentially suitable for simulating China's plantation forest ecosystems and supporting carbon accounting to monitor peak CO_(2)emissions and reach carbon neutrality.
基金funding provided by Universitàdi Pisa within the CRUI-CARE Agreement。
文摘Sustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems.This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner.The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed.Using several optical sensors from leaf to landscape-level,a number of forest diseases characterized by variable pathogenic processes have been detected,identified and quantified in many country sites worldwide.Overall,these reviewed studies have pointed out the green and red regions of the visible spectrum,the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development.Late disease conditions particularly affect the shortwave-infrared region,mostly related to water content.This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas,to further develop hyperspectral sensors for early detection and discrimination of forest disturbances,to improve devices for remote sensing,to implement longterm monitoring,and to advance algorithms for exploitation of spectral data.Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.
基金carried out in the framework of the EBOR-project funded by the Academy of Finland(Proj.No.276255)
文摘The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.
基金This work was supported by Provincial Key Technologies R and D program of Heilongjiang (GC02B608)
文摘The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics of forest resources data, a component geographic information system (ComGIS) was developed for forest resources management. The system embeds a GIS ActiveX control MapObjects (Inc. ESRI) on Visual C++ platform. System design, data organization and achieving way were studied and expatiated by taking Xigangzi Forestry Centre as study object. The system has many useful functions,, such as adding and display of various map layers, zoom of map by wheeling mouse, attribute and spatial data querying, map auto roaming, features rendering based on the spatial trait of data, label controlling through attribute data band with vector graph, as well as output of 'Column chart' for showing the result of statistics. At the same time, parts of source codes are attached.
文摘Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Internet Age, this paper explores the importance and the feasibility of setting up Forest Resources Management Information System based on the WEBGIS. At the same time, based on the experience of our study, the paper explores the function, structure and method of developing the Forest Resources Management Information System based on WEBGIS. With the technology of WEBGIS, the Forest Resources Management Information System with data from Huoditang Farm was set up, which makes a great impact on forest resources management. So setting up the Forest Resources Management Information System based on WEBGIS is a trend of forest resources management. In the course of setting up this system, we must pay attention to following questions: 1) unify data standard and information encoding; 2) change mind.
基金funded through the project‘Bio Holz’(grant no.01LC1323A)in the funding program‘Research for the Implementation of the National Biodiversity Strategy(F&U NBS)’by the German Federal Ministry for Education and Research(BMBF)and the German Federal Agency for Nature Conservation(Bf N)with funds provided by the German Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety(BMUB)supported by the DFG Priority Program 1374‘Infrastructure-Biodiversity-Exploratories’。
文摘Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.
基金support by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI,project number PN-II-ID-PCE-2011-3-0781support by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI,project number PN-II-RU-TE-2014-4-0017
文摘Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods: Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results: The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions: The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50 % lower than in Romania, but the higher harvesting rate resulted in more than doubling wood production. Considering the mitigation effects of climate change by forests, it emerges that the increase in standing volume of forests in Romania is smaller than the additional harvest in Germany which serves fossil fuel substitution.