期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Horizontal-to-vertical spectral ratio inversion method based on multimodal forest optimization algorithm
1
作者 CHEN Xuanning HAN Fuxing +2 位作者 GAO Zhenghui SUN Zhangqing HAN Jiangtao 《Global Geology》 2024年第3期167-176,共10页
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc... The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information. 展开更多
关键词 MICROTREMOR HVSR method multimodal forest optimization algorithm HVSR curve inversion
下载PDF
Improving mobile mass monitoring in the IoT environment based on Fog computing using an improved forest optimization algorithm
2
作者 Tahere Motedayen Mahdi Yaghoobi Maryam Kheirabadi 《Journal of Control and Decision》 EI 2024年第1期36-49,共14页
In the IoT-based users monitor tasks in the network environment by participating in the data collection process by smart devices.Users monitor their data in the form of fog computing(mobile mass monitoring).Service pr... In the IoT-based users monitor tasks in the network environment by participating in the data collection process by smart devices.Users monitor their data in the form of fog computing(mobile mass monitoring).Service providers are required to pay user rewards without increasing platform costs.One of the NP-Hard methods to maximise the coverage rate and reduce the platform costs(reward)is the Cooperative Based Method for Smart Sensing Tasks(CMST).This article uses chaos theory and fuzzy parameter setting in the forest optimisation algorithm.The proposed method is implemented with MATLAB.The average findings show that the network coverage rate is 31%and the monitoring cost is 11%optimised compared to the CMST scheme and the mapping of the mobile mass monitoring problem to meta-heuristic algorithms.And using the improved forest optimisation algorithm can reduce the costs of the mobile crowd monitoring platform and has a better coverage rate. 展开更多
关键词 Internet of Things mobile mass monitoring forest optimization algorithm chaos theory fuzzy system
原文传递
森林优化特征选择算法的增强与扩展 被引量:9
3
作者 刘兆赓 李占山 +2 位作者 王丽 王涛 于海鸿 《软件学报》 EI CSCD 北大核心 2020年第5期1511-1524,共14页
特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林... 特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机性、全局播种阶段的人为参数设定,影响了该算法的准确率和维度缩减能力;同时,算法本身存在着高维数据处理能力不足的本质缺陷.从信息增益率的角度给出了一种初始化策略,在全局播种阶段,借用模拟退火控温函数的思想自动生成参数,并结合维度缩减率给出了适应度函数;同时,针对形成的优质森林采取贪心算法,形成一种特征选择算法EFSFOA(enhanced feature selection using forest optimization algorithm).此外,在面对高维数据的处理时,采用集成特征选择的方案形成了一个适用于EFSFOA的集成特征选择框架,使其能够有效处理高维数据特征选择问题.通过设计对比实验,验证了EFSFOA与FSFOA相比在分类准确率和维度缩减率上均有明显的提高,高维数据处理能力更是提高到了100 000维.将EFSFOA与近年来提出的比较高效的基于演化计算的特征选择方法进行对比,EFSFOA仍具有很强的竞争力. 展开更多
关键词 enhanced feature selection using forest optimization algorithm(EFSFOA) 高维 特征选择 演化计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部