Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom...Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.展开更多
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho...Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.展开更多
Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and econ...Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.展开更多
Three-dimensional(3-D)Monte Carlo-based radiative transfer(MCRT)models are usually used for benchmarking in intercomparisons of the canopy radiative transfer(RT)simulations.However,the 3-D MCRT models are rarely appli...Three-dimensional(3-D)Monte Carlo-based radiative transfer(MCRT)models are usually used for benchmarking in intercomparisons of the canopy radiative transfer(RT)simulations.However,the 3-D MCRT models are rarely applied to develop remote sensing algorithms to estimate essential climate variables of forests,due mainly to the difficulties in obtaining realistic stand structures for different forest biomes over regional to global scales.Fortunately,some of important tree structure parameters such as canopy height and tree density distribution have been available globally.This enables to run the intermediate complexities of the 3-D MCRT models.We consequently developed a statistical approach to generate forest structures with intermediate complexities depending on the inputs of canopy height and tree density.It aims at facilitating applications of the 3-D MCRT models to develop remote sensing retrieval algorithms.The proposed approach was evaluated using field measurements of two boreal forest stands at Estonia and USA,respectively.Results demonstrated that the simulations of bidirectional reflectance factor(BRF)based on the measured forest structures agreed well with the BRF based on the generated structures from the proposed approach with the root mean square error(RMSE)and relative RMSE(rRMSE)ranging from 0.002 to 0.006 and from 0.7%to 19.8%,respectively.Comparison of the computed BRF with corresponding MODIS reflectance data yielded RMSE and rRMSE lower than 0.03 and 20%,respectively.Although the results from the current study are limited in two boreal forest stands,our approach has the potential to generate stand structures for different forest biomes.展开更多
Laurel forests are quite relevant for biodiversity conservation and are among the island ecosystems most severely damaged by human activities.In the past,Canary laurel forests have been greatly altered by logging,live...Laurel forests are quite relevant for biodiversity conservation and are among the island ecosystems most severely damaged by human activities.In the past,Canary laurel forests have been greatly altered by logging,livestock and agriculture.The remains of laurel forests are currently protected in the Canary Islands(Spain).However,we miss basic information needed for their restoration and adaptive management,such as tree longevity,growth potential and responsiveness to natural and anthropogenic disturbances.Using dendrochronological methods,we studied how forest dynamic is related to land-use change and windstorms in two well-preserved laurel forests on Tenerife Island.Wood cores were collected from over 80 trees per stand at three stands per forest.We used ring-width series to estimate tree ages and calculate annual basal area increments(BAI),cumulative diameter increases,and changes indicative of released and suppressed growth.Twelve tree species were found in all stands,with Laurus novocanariensis,Ilex canariensis and Morella faya being the most common species.Although some individuals were over 100 years old,61.8%-88.9% of the trees per stand established between 1940 and 1970,coinciding with a post-war period of land abandonment,rural exodus and the onset of a tourism economy.Some trees have shown growth rates larger than 1 cm diameter per year and most species have had increasing BAI trends over the past decades.Strong growth releases occurred after windstorms at both sites,but the effects of windstorms were site-dependent,with the 1958 storm affecting mainly the eastern tip of the island(Anaga massif)and the 1991 storm the western tip(Teno massif).Given the great ability of laurel forest trees to establish after land use cessation and to increase growth after local disturbances such as windstorms,passive restoration may be sufficient to regenerate this habitat in currently degraded areas.展开更多
Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient ...Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection.However,to use mangroves effectively as a nature-based measure for flood risk reduction,we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure.In this perspective,we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence.We show that the forest properties that comprise coastal flood protection are well-known,but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation.Overall,there is relatively good understanding of the ecological processes that drive forest structure and size,but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics,and on the role of combined stressors influencing forest retreat.Integrating simulation models of forest structure under changing physical(e.g.due to sea-level change)and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.展开更多
Forest canopy in a deciduous forest has significant sheltering effects on the sub-canopy solar radiation,significantly influencing the energy balance of snow and permafrost beneath the forest and their spatial distrib...Forest canopy in a deciduous forest has significant sheltering effects on the sub-canopy solar radiation,significantly influencing the energy balance of snow and permafrost beneath the forest and their spatial distribution.This study employs a digital camera mounted with a fisheye lens to acquire photographs at various times in a growth cycle of the forest canopy at three selected sites in a deciduous forest near the Greater Khingan Mountains Forest Ecological Station,Northeast China.The vegetation types and conditions at the selected sites include P1 in Ledum-Claopodium-L.dahurica,P2 in Carex tato-L.dahurica,and P3 in Betula fruticosa-L.dahurica.After necessary image processing,these photographs were used to identify the canopy structure and its impacts on the sub-canopy solar radiation.Results show that fisheye photographs can successfully capture the forest canopy structure and are useful in estimating the sub-canopy solar radiation.The order of sheltering effects from the largest to the smallest on sub-canopy solar radiation at three selected sites is P3,P1,and P2,highly depending on the canopy density.Then sub-canopy solar radiation was calculated using fisheye photographs and an algorithm validated by in-situ observed solar radiation beneath the canopy at P1 and P3.The results are reasonable,although the accuracy seems compromised due to the mismatch of conditions for calculation and observation.Results also show that the mean annual solar radiation above the canopy was about 148.3 W/m2 in 2018,and the mean annual solar radiation values beneath the canopy were about 90.0,123.8,and 61.0 W/m2 at P1,P2,and P3,with only 60%,84%,and 42%of the total solar radiation penetrating through the canopy,respectively.Even in winter,when the trees are leafless,the canopy sheltering effects cannot be ignored in dense forests.Despite the limitations,fisheye photographs and related algorithms are useful in investigating the forest canopy structure and its impacts on sub-canopy solar radiation.展开更多
Montane forest ecosystems support biodiversity and provide varied ecosystem services to adjacent and downstream human communities. However, human-induced disturbances are common in many of these ecosystems, threatenin...Montane forest ecosystems support biodiversity and provide varied ecosystem services to adjacent and downstream human communities. However, human-induced disturbances are common in many of these ecosystems, threatening their capacity to sustain their functions. This study assessed the status of woody vegetation and livestock use of a Kenyan montane forest 10 years after government-sanctioned cessation of human encroachment. The findings can inform suitable interventions that support recovery of abandoned forest settlements subjected to continuous anthropogenic disturbances. Selected woody vegetation attributes and livestock disturbance indicators were assessed across three human-driven disturbance regimes (light, moderate and heavy) using stratified-systematic sampling technique. Data on the extent of community dependence on forest grazing were collected from 381 randomly selected forest adjacent households using semi-structured questionnaires. Information on the palatability of plants to livestock was obtained from Focus Group Discussions. Vegetation data were analyzed using linear mixed models, while descriptive analysis was applied on household survey data. A total of 33 woody plant species belonging to 22 families were identified, out of which 55% were perceived to be unpalatable to livestock. Species richness, species diversity, stem density and basal areas declined significantly with increasing levels of disturbance. Specifically, these attributes were 59% - 98% lower in heavily disturbed sites than in moderately and lightly disturbed sites. A vast majority (88%) of the sampled households grazed their livestock in the forest throughout the year. Evidence from this study indicates that intense past and ongoing anthropogenic disturbances caused significant negative effects on the forest vegetation condition, and lowered its capacity to recover. Forest managers should prioritize minimizing recurrent anthropogenic disturbances as the forest recovers to ensure successful succession and sustainable provision of ecosystem services.展开更多
The effects of tropical storm on the community structure of Sonneratia caseolaris-Sonneratia apetala(S.caseolaris-S.apetala) artificial mangroves and Ceriops tagal-Rhizophora stylosa(C.tagal-R.stylosa) natural mangrov...The effects of tropical storm on the community structure of Sonneratia caseolaris-Sonneratia apetala(S.caseolaris-S.apetala) artificial mangroves and Ceriops tagal-Rhizophora stylosa(C.tagal-R.stylosa) natural mangroves were analyzed in Dongzhai Harbor in Hainan Island,and the results showed that the average tree height,crown width(CW) in east-west direction(E-W) and north-south direction(N-S) of S.caseolaris-S.apetala artificial mangroves were decreased by 2.8%,14.3% and 12.1% respectively,but the average clear bole height was increased by 60.0% after tropical storm.For C.tagal-R.stylosa natural mangroves,the average tree height and clear bole height were increased by 8.3% and 20.0%,but there was no change in CW(E-W) and CW(N-S).Therefore,tropical storm had greater effects on artificial mangroves than natural mangroves.After tropical storm,tree heights of different species increased in the following sequence:C.tagal>R.stylosa>S.apetala>S.caseolaris,and the sequence of effect degree on CW was C.tagal>R.stylosa>S.caseolaris>S.apetala,while it was C.tagal < R.stylosa < S.caseolaris < S.apetala for clear bole height.Under the effect of tropical storm,the average biomass loss and dry biomass loss of S.caseolaris-S.apetala artificial mangroves were 0.22 and 0.13 t/hm2 respectively,while there was a minimal biomass loss in C.tagal-R.stylosa natural mangroves.On the whole,the wind resistance of natural mangroves was better than artificial mangroves,and that of C.tagal was stronger than R.stylosa,while S.caseolaris was better than S.apetala.展开更多
For forest ecosystem management to be effective, knowledge of the horizontal and vertical structural diversity of a forest is essential. The moist Afromontane highlands of Wondo Genet in south-central Ethiopia present...For forest ecosystem management to be effective, knowledge of the horizontal and vertical structural diversity of a forest is essential. The moist Afromontane highlands of Wondo Genet in south-central Ethiopia present an opportunity to restore and rehabilitate and enhance the ecosystem services to be obtained from this forest sustainably. We focused on the forest structural characteristics to better understand the current forest conditions to assist in the sustainable management of this resource. A total of 75 (20 m × 20 m) quadrats were sampled and diame- ter at breast height (DBH) 〉2 cm and stem height 〉2 m were measured. Species identity and abundance, elevation, slope, and aspect were recorded for each plot. Structural characteristics were computed for each plot. Relationship of topographic factors with vegetation characteristics was conducted using R-Software. A total of 72 woody species was re- corded. Whereas, the overall diameter distribution shows an inverted J-shaped curve, the basal area followed a bell-shaped pattern. Five types of population structures are revealed. The mean tree density and basal area was 397.3 stems.ha-1 and 31.4 m2.ha-1, respectively. Only 2.8% of the tree species have densities of 〉25 stems.ha^-1 and the percentage dis- tribution of trees show 56.2% in the DBH class 2-10 cm, indicating that the forest is dominated by medium-sized trees. Celtis africana (8.81 m2.ha^-1) and Pouteria adolfi-friederieii (5.13 m2.ha^-1) make the highest contribution to the basal area and species importance value index. The families/species with the highest importance value index are Ulmaceae, Fabacea and Sapotaceae. Species abundance (r2 = 0.32, p 〈0.001) and species richness (P =0.50, p 〈0.001) are positively related with tree density. Tree density is negatively related with elevation (~ = -0.36, p 〈0.001), slope (r2 =-0.15, p 〈0.001) and aspect (r2 = -0.07, p 〈0.05). While basal area is negatively related with elevation (r2 =-0.14, p 〈0.001), it has a positive relationship with tree density (r2 =0.28, p 〈0.001 and species richness (r2 =0.098). Species with poor population structure should be assisted by restoration tasks and further anthropogenic distur- bance such as illegal logging and fuel wood extraction should be re- stricted.展开更多
Determining forest structural complexity,i.e.,a measure of the number of different attributes of a forest and the relative abundance of each attribute,is important for forest management and conservation.In this study,...Determining forest structural complexity,i.e.,a measure of the number of different attributes of a forest and the relative abundance of each attribute,is important for forest management and conservation.In this study,we examined the structural complexity of mixed conifer–broadleaf forests by integrating multiple forest structural attributes derived from airborne Li DAR data and aerial photography.We sampled 76 plots from an unmanaged mixed conifer–broadleaf forest reserve in northern Japan.Plot-level metrics were computed for all plots using both field and remote sensing data to assess their ability to capture the vertical and horizontal variations of forest structure.A multivariate set of forest structural attributes that included three Li DAR metrics(95 th percentile canopy height,canopy density and surface area ratio) and one image metric(proportion of broadleaf cover),was used to classify forest structure into structural complexity classes.Our results revealed significant correlation between field and remote sensing metrics,indicating that these two sets of measurements captured similar patterns of structure in mixed conifer–broadleaf forests.Further,cluster analysis identified six forest structural complexity classes includingtwo low-complexity classes and four high-complexity classes that were distributed in different elevation ranges.In this study,we could reliably analyze the structural complexity of mixed conifer–broadleaf forests using a simple and easy to calculate set of forest structural attributes derived from airborne Li DAR data and high-resolution aerial photography.This study provides a good example of the use of airborne Li DAR data sets for wider purposes in forest ecology as well as in forest management.展开更多
Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The...Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The vertical structure was defined by three strata in the coniferous forests and two strata in the broadleaved forests. Timber harvesting in Abies religiosa and Quercus laurina forests and fires generated by humans in Pinus hartwegii forests impeded the recruitment of saplings. Mature trees were also heavily impacted by logging in Pinus hartwegii forests. On the contrary, Alnusjorullensis forests were increas- ing due to the disturbance of Pinus and Quercus forests, as well aban- doned crop lands within the park. A combination of logging, uncon- trolled fire, and grazing appears to be compromising the recruitment of important tree species in this national park. These factors, together with human settlements, have also increased the proportion of early succes- sional species. Changes in forest structure from human disturbance indicate a need to control these activities if conservation goals are not to be compromised.展开更多
Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrof...Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.展开更多
Background: Schima genus of Theaceae is confined to subtropics and tropics of South, East and Southeast Asia.Thirteen species of Schima are distributed in subtropical China. Many of them appear as dominant canopy spec...Background: Schima genus of Theaceae is confined to subtropics and tropics of South, East and Southeast Asia.Thirteen species of Schima are distributed in subtropical China. Many of them appear as dominant canopy species in the subtropical forests. To date, Schima species richness distribution patterns of China have remained unknown.Meanwhile, there has been a longtime debate as to whether forests dominated by Schima species are early or late successional forests. We aim to clarify Schima species richness patterns and these species' roles in the forest succession and regeneration dynamics of the subtropical ecosystem in Yunnan Province, China.Method: We mapped Schima species richness distribution patterns in China. Based on 71 vegetation plots, we analyzed forest characteristics, population structure, and regeneration dynamics of Schima species in Yunnan.Results: Yunnan was found to harbor the greatest richness and the highest rarity-weighted richness of Schima species in the subtropical regions of China. We classified five primary and six secondary forest types containing Schima species as one of dominants. Yunnan had the high floristic diversity and varying stand structure of forests containing Schima species. The Schima species studied generally had a sporadic regeneration type and a long lifespan. Four species(Schima argentea, Schima villosa, Schima sinensis, Schima sericans) were shade-intolerant. But three species(Schima noronhae, Schima khasiana and Schima wallichii) were considered as bi-modal type species having shade-intolerant and shade-tolerant traits. Schima noronhae was seen to be a top dominant in late successional forests, while S. wallichii was found as a top-dominant in early or middle or late successional forests. S.khasiana, Schima villosa, Schima sinensis usually appeared as a top dominant in early or middle successional secondary forests, though they also presented as a second dominant in late-successional forests. Schima argentea and Schima sericans dominated only in the early or middle/seral successional forests. Schima species' regeneration establishment depended mainly on forest canopy gap formation through moderate human and natural disturbances.Conclusions: Yunnan has high species richness and rarity-weighted richness of Schima. Both moderate human and natural disturbances have provided regeneration niches for Schima species. Some of the Schima species studied as a second dominant(rare as the top-dominant) present in the late-successional forests. Some of them are more often as the top-dominant in early or middle successional forests, where as time goes by the dominance of Schima species would be replaced by their associated dominant taxa such as Castanopsis species.展开更多
The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland everg...The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland evergreen rainforest' formation and exhibit striking similarities and conspicuous differences with the equatorial rainforests in Asia-Pacific as well as tropical seasonal rainforests in southwestern China near the Tropic of Cancer. We found these common attributes of the rainforests in Meghalaya: familial composition with predominance of Euphorbiaceae, Lauraceae, Meliaceae, Moraceae, Myrsiticaceae,Myrtaceae and Rubiaceae; deciduousness in evergreen physiognomy; dominance of mega-and mesophanerophytic life-forms; abundance of species with low frequency of occurrence(rare and aggregated species); low proportional abundance of the abundant species; and truncated lognormal abundance distribution. The levels of stand density and stand basal area were comparable with seasonal rainforests in southwestern China, but were lower than equatorial rainforests. Tropical Asian species predominated flora, commanding 95% of the abundance. The differences include overall low stature(height) of the forest, inconspicuous stratification in canopy, fewer species and individuals of liana, thicker understory,higher proportion of rare species, absence of locally endemic species and relatively greater dominance of Fagaceae and Theaceae. The richness of species per hectare(S) was considerably lower at higher latitudes in Meghalaya than in equatorial rainforests, but was comparable with seasonal rainforests. Shannon's diversity index(H’=4.40 nats for ≥10 cm gbh and 4.25 nats for ≥30 cm gbh) was lower on higher latitudes in Meghalaya in comparison to species-rich equatorial rainforests, but it was the highest among all lowland rainforests near the Tropic of Cancer.展开更多
In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (...In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (T0, control), 15% (T1, low intensity), 35% (T2, moderate intensity), and 100% (T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between To and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height (DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in To, while the density of seedlings and saplings were significantly higher in T2 than in To. Structural characteristics in T3 were entirely different from To. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard's similarity coefficient (Cj); the Morisita-Hom index (CMH); and the Bray-Curtis index (CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains.展开更多
Elucidating woody community diversity and structure change along environmental gradients is still a central issue of tropical forest ecology. We have evaluated changes in alpha and beta diversity, community compositio...Elucidating woody community diversity and structure change along environmental gradients is still a central issue of tropical forest ecology. We have evaluated changes in alpha and beta diversity, community composition and structure of woody communities along an elevational gradient in Dwarf Cloud Forests, Southeast Brazil. We selected five areas along an elevational gradient(1,300-1,600 m asl), and randomly allocated 10 plots(10 m × 20 m) in each area in the Ibitipoca State Park(ISP), Serra da Mantiqueira, southeastern Brazil. All woody species(diameter at breast height ≥ 5.0 cm) were collected for taxonomic identification. Thus, we analysed the woody communities based on a phytosociological approach. Overall, 147 species and 37 families were recorded, distributed in 2,303 individuals. No differences in the species richness pattern were observed between areas using the rarefaction and extrapolation curves. Significant differences in species composition and structure between areas were observed. The high beta diversity observed, corroborated by the Jaccard coefficient, increases with decreasing altitude. Our results showed that woody communities in the studied Dwarf Cloud Forests have a higher diversity and structural variability along elevational gradient.展开更多
The short-term effects of selection curing of different intensities on the forest structure and species diversity of evergreen broad-leaved forest in northern Fujian Province were investigated and analyzed. The result...The short-term effects of selection curing of different intensities on the forest structure and species diversity of evergreen broad-leaved forest in northern Fujian Province were investigated and analyzed. The results showed that selection curing of low and medium intensities caused little variation in the forest structure. After curing, the dominant species retained their leading status in the community. However, the community structure changed significantly following selection curing of high and extra-high intensities; the status of the dominant species of the community declined dramatically. Some tree species began to disappear from the sampling plots. Except for extra-high intensity curing, the diversity of tree species did not change significantly for the other three curing intensities. However, the evenness of the stands was very different among the four kinds of curing plots. For low and medium intensity selection cutting, the evenness declined slightly. For extra-high intensity selection curing, the evenness increased to some extent, which might be due to a more even distribution of tree species after curing. CuRing operations resulted in some adverse reactions to development of arborous species diversity of evergreen broad-leaved forest, particularly serious damage to the forest canopy. But the rational selection cuttings, which may benefit the restoration and maintenance of species diversity over a long period and may come about from the variations in environmental factors such as sunlight, temperature and humidity.展开更多
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
基金supported by the Guangxi Key R&D Program (project No. AB16380254)a research project of Guangxi Forestry Department (Guilinkezi [2015] No.5)supported a grant for Bagui Senior Fellow (C33600992001)。
文摘Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.
基金support by Melbourne International Research Scholarship (MIRS)。
文摘Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.
基金Support was provided by the New Hampshire Agricultural Experiment Station.This is Scientific Contribution Number 2978supported by the USDA National Institute of Food and Agriculture,McIntire-Stennis Project 7003549
文摘Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.
文摘Three-dimensional(3-D)Monte Carlo-based radiative transfer(MCRT)models are usually used for benchmarking in intercomparisons of the canopy radiative transfer(RT)simulations.However,the 3-D MCRT models are rarely applied to develop remote sensing algorithms to estimate essential climate variables of forests,due mainly to the difficulties in obtaining realistic stand structures for different forest biomes over regional to global scales.Fortunately,some of important tree structure parameters such as canopy height and tree density distribution have been available globally.This enables to run the intermediate complexities of the 3-D MCRT models.We consequently developed a statistical approach to generate forest structures with intermediate complexities depending on the inputs of canopy height and tree density.It aims at facilitating applications of the 3-D MCRT models to develop remote sensing retrieval algorithms.The proposed approach was evaluated using field measurements of two boreal forest stands at Estonia and USA,respectively.Results demonstrated that the simulations of bidirectional reflectance factor(BRF)based on the measured forest structures agreed well with the BRF based on the generated structures from the proposed approach with the root mean square error(RMSE)and relative RMSE(rRMSE)ranging from 0.002 to 0.006 and from 0.7%to 19.8%,respectively.Comparison of the computed BRF with corresponding MODIS reflectance data yielded RMSE and rRMSE lower than 0.03 and 20%,respectively.Although the results from the current study are limited in two boreal forest stands,our approach has the potential to generate stand structures for different forest biomes.
基金funded by MCIN/AEI/10.13039/501100011033 in projects LAUREL(PID2019-109906RA-I00)and PROWARM(PID2020-118444GA-100)the Consejería de Educaci on of the Junta de Castilla y Le on in projects VA113G19 and IR2020-1-UVA08+7 种基金the project“CLU-2019-01-iu FOR Institute Unit of Excellence”of the University of Valladolidsupported by Universidad de Valladolid Predoctoral Contract(113-2019PREUVA22)funded by the Junta de Castilla y Le onco-funded by the European Union(ERDF“Europe drives our growth”)supported by a Postdoctoral grant(IJC2019-040571-I)funded by MCIN/AEI/10.13039/501100011033supported by an FPI Predoctoral Contract(PRE2018-084106)funded by MCIN/AEI/10.13039/501100011033/and by“ESF Investing in your future”supported by PID2019-106908RAI00/AEI/10.13039/501100011033 from Spanish MICINN and the CR2project FONDAP-ANID 1522A0001(Chile)supported by the Comunidad de Madrid project REMEDINAL TE-CM(S2018/EMT-4338)。
文摘Laurel forests are quite relevant for biodiversity conservation and are among the island ecosystems most severely damaged by human activities.In the past,Canary laurel forests have been greatly altered by logging,livestock and agriculture.The remains of laurel forests are currently protected in the Canary Islands(Spain).However,we miss basic information needed for their restoration and adaptive management,such as tree longevity,growth potential and responsiveness to natural and anthropogenic disturbances.Using dendrochronological methods,we studied how forest dynamic is related to land-use change and windstorms in two well-preserved laurel forests on Tenerife Island.Wood cores were collected from over 80 trees per stand at three stands per forest.We used ring-width series to estimate tree ages and calculate annual basal area increments(BAI),cumulative diameter increases,and changes indicative of released and suppressed growth.Twelve tree species were found in all stands,with Laurus novocanariensis,Ilex canariensis and Morella faya being the most common species.Although some individuals were over 100 years old,61.8%-88.9% of the trees per stand established between 1940 and 1970,coinciding with a post-war period of land abandonment,rural exodus and the onset of a tourism economy.Some trees have shown growth rates larger than 1 cm diameter per year and most species have had increasing BAI trends over the past decades.Strong growth releases occurred after windstorms at both sites,but the effects of windstorms were site-dependent,with the 1958 storm affecting mainly the eastern tip of the island(Anaga massif)and the 1991 storm the western tip(Teno massif).Given the great ability of laurel forest trees to establish after land use cessation and to increase growth after local disturbances such as windstorms,passive restoration may be sufficient to regenerate this habitat in currently degraded areas.
基金supported by the Joint Research Project Sustainable Deltas co-funded by the National Natural Science Foundation of China(NSFCGrant No.51761135022)+11 种基金the Dutch Research Council(NWOGrant No.ALWSD.2016.026)the Engineering and Physical Sciences Research Council(EPSRCGrant No.EP/R024537/1)the National Natural Science Foundation of China(Grant No.42176202)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory,Zhuhai(Grant No.311021004)the Guangdong Provincial Department of Science and Technology(Grant No.2019ZT08G090)the 111 Project(Grant No.B21018)the ERC H2020 ESTUARIES Project(Grant No.647570)the Horizon 2020 Marie Skłodowska-Curie Actions Individual Fellowship(Grant No.896888)the China Scholarship Council(Grant No.201706710005)the NWO“LIVING DIKES e Realising Resilient and Climate-Proof Coastal Protection”Project(Grant No.NWA.1292.19.257)。
文摘Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection.However,to use mangroves effectively as a nature-based measure for flood risk reduction,we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure.In this perspective,we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence.We show that the forest properties that comprise coastal flood protection are well-known,but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation.Overall,there is relatively good understanding of the ecological processes that drive forest structure and size,but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics,and on the role of combined stressors influencing forest retreat.Integrating simulation models of forest structure under changing physical(e.g.due to sea-level change)and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.
基金the National Natural Science Foundation of China(Grant Nos.41971079 and 41671059,41975081).
文摘Forest canopy in a deciduous forest has significant sheltering effects on the sub-canopy solar radiation,significantly influencing the energy balance of snow and permafrost beneath the forest and their spatial distribution.This study employs a digital camera mounted with a fisheye lens to acquire photographs at various times in a growth cycle of the forest canopy at three selected sites in a deciduous forest near the Greater Khingan Mountains Forest Ecological Station,Northeast China.The vegetation types and conditions at the selected sites include P1 in Ledum-Claopodium-L.dahurica,P2 in Carex tato-L.dahurica,and P3 in Betula fruticosa-L.dahurica.After necessary image processing,these photographs were used to identify the canopy structure and its impacts on the sub-canopy solar radiation.Results show that fisheye photographs can successfully capture the forest canopy structure and are useful in estimating the sub-canopy solar radiation.The order of sheltering effects from the largest to the smallest on sub-canopy solar radiation at three selected sites is P3,P1,and P2,highly depending on the canopy density.Then sub-canopy solar radiation was calculated using fisheye photographs and an algorithm validated by in-situ observed solar radiation beneath the canopy at P1 and P3.The results are reasonable,although the accuracy seems compromised due to the mismatch of conditions for calculation and observation.Results also show that the mean annual solar radiation above the canopy was about 148.3 W/m2 in 2018,and the mean annual solar radiation values beneath the canopy were about 90.0,123.8,and 61.0 W/m2 at P1,P2,and P3,with only 60%,84%,and 42%of the total solar radiation penetrating through the canopy,respectively.Even in winter,when the trees are leafless,the canopy sheltering effects cannot be ignored in dense forests.Despite the limitations,fisheye photographs and related algorithms are useful in investigating the forest canopy structure and its impacts on sub-canopy solar radiation.
文摘Montane forest ecosystems support biodiversity and provide varied ecosystem services to adjacent and downstream human communities. However, human-induced disturbances are common in many of these ecosystems, threatening their capacity to sustain their functions. This study assessed the status of woody vegetation and livestock use of a Kenyan montane forest 10 years after government-sanctioned cessation of human encroachment. The findings can inform suitable interventions that support recovery of abandoned forest settlements subjected to continuous anthropogenic disturbances. Selected woody vegetation attributes and livestock disturbance indicators were assessed across three human-driven disturbance regimes (light, moderate and heavy) using stratified-systematic sampling technique. Data on the extent of community dependence on forest grazing were collected from 381 randomly selected forest adjacent households using semi-structured questionnaires. Information on the palatability of plants to livestock was obtained from Focus Group Discussions. Vegetation data were analyzed using linear mixed models, while descriptive analysis was applied on household survey data. A total of 33 woody plant species belonging to 22 families were identified, out of which 55% were perceived to be unpalatable to livestock. Species richness, species diversity, stem density and basal areas declined significantly with increasing levels of disturbance. Specifically, these attributes were 59% - 98% lower in heavily disturbed sites than in moderately and lightly disturbed sites. A vast majority (88%) of the sampled households grazed their livestock in the forest throughout the year. Evidence from this study indicates that intense past and ongoing anthropogenic disturbances caused significant negative effects on the forest vegetation condition, and lowered its capacity to recover. Forest managers should prioritize minimizing recurrent anthropogenic disturbances as the forest recovers to ensure successful succession and sustainable provision of ecosystem services.
基金Supported by Scientific Research Special Fund for Public Welfare Industry(2005DIB3J137)National Key Technology R & D Program in the 11th Five year Plan of China(2006BAD03A1402)+1 种基金948 Project of The State Forestry Administration(2006-4-34)The Doctoral Science Foundation of Hainan University(Rndy0703)
文摘The effects of tropical storm on the community structure of Sonneratia caseolaris-Sonneratia apetala(S.caseolaris-S.apetala) artificial mangroves and Ceriops tagal-Rhizophora stylosa(C.tagal-R.stylosa) natural mangroves were analyzed in Dongzhai Harbor in Hainan Island,and the results showed that the average tree height,crown width(CW) in east-west direction(E-W) and north-south direction(N-S) of S.caseolaris-S.apetala artificial mangroves were decreased by 2.8%,14.3% and 12.1% respectively,but the average clear bole height was increased by 60.0% after tropical storm.For C.tagal-R.stylosa natural mangroves,the average tree height and clear bole height were increased by 8.3% and 20.0%,but there was no change in CW(E-W) and CW(N-S).Therefore,tropical storm had greater effects on artificial mangroves than natural mangroves.After tropical storm,tree heights of different species increased in the following sequence:C.tagal>R.stylosa>S.apetala>S.caseolaris,and the sequence of effect degree on CW was C.tagal>R.stylosa>S.caseolaris>S.apetala,while it was C.tagal < R.stylosa < S.caseolaris < S.apetala for clear bole height.Under the effect of tropical storm,the average biomass loss and dry biomass loss of S.caseolaris-S.apetala artificial mangroves were 0.22 and 0.13 t/hm2 respectively,while there was a minimal biomass loss in C.tagal-R.stylosa natural mangroves.On the whole,the wind resistance of natural mangroves was better than artificial mangroves,and that of C.tagal was stronger than R.stylosa,while S.caseolaris was better than S.apetala.
基金spported by the Swedish International Development Agency (SIDA)Center for International Mobility (CIMO,Finland)+1 种基金International Foundation for Science (IFS Grt. No.D/5053-1)for the first author’s financial support
文摘For forest ecosystem management to be effective, knowledge of the horizontal and vertical structural diversity of a forest is essential. The moist Afromontane highlands of Wondo Genet in south-central Ethiopia present an opportunity to restore and rehabilitate and enhance the ecosystem services to be obtained from this forest sustainably. We focused on the forest structural characteristics to better understand the current forest conditions to assist in the sustainable management of this resource. A total of 75 (20 m × 20 m) quadrats were sampled and diame- ter at breast height (DBH) 〉2 cm and stem height 〉2 m were measured. Species identity and abundance, elevation, slope, and aspect were recorded for each plot. Structural characteristics were computed for each plot. Relationship of topographic factors with vegetation characteristics was conducted using R-Software. A total of 72 woody species was re- corded. Whereas, the overall diameter distribution shows an inverted J-shaped curve, the basal area followed a bell-shaped pattern. Five types of population structures are revealed. The mean tree density and basal area was 397.3 stems.ha-1 and 31.4 m2.ha-1, respectively. Only 2.8% of the tree species have densities of 〉25 stems.ha^-1 and the percentage dis- tribution of trees show 56.2% in the DBH class 2-10 cm, indicating that the forest is dominated by medium-sized trees. Celtis africana (8.81 m2.ha^-1) and Pouteria adolfi-friederieii (5.13 m2.ha^-1) make the highest contribution to the basal area and species importance value index. The families/species with the highest importance value index are Ulmaceae, Fabacea and Sapotaceae. Species abundance (r2 = 0.32, p 〈0.001) and species richness (P =0.50, p 〈0.001) are positively related with tree density. Tree density is negatively related with elevation (~ = -0.36, p 〈0.001), slope (r2 =-0.15, p 〈0.001) and aspect (r2 = -0.07, p 〈0.05). While basal area is negatively related with elevation (r2 =-0.14, p 〈0.001), it has a positive relationship with tree density (r2 =0.28, p 〈0.001 and species richness (r2 =0.098). Species with poor population structure should be assisted by restoration tasks and further anthropogenic distur- bance such as illegal logging and fuel wood extraction should be re- stricted.
文摘Determining forest structural complexity,i.e.,a measure of the number of different attributes of a forest and the relative abundance of each attribute,is important for forest management and conservation.In this study,we examined the structural complexity of mixed conifer–broadleaf forests by integrating multiple forest structural attributes derived from airborne Li DAR data and aerial photography.We sampled 76 plots from an unmanaged mixed conifer–broadleaf forest reserve in northern Japan.Plot-level metrics were computed for all plots using both field and remote sensing data to assess their ability to capture the vertical and horizontal variations of forest structure.A multivariate set of forest structural attributes that included three Li DAR metrics(95 th percentile canopy height,canopy density and surface area ratio) and one image metric(proportion of broadleaf cover),was used to classify forest structure into structural complexity classes.Our results revealed significant correlation between field and remote sensing metrics,indicating that these two sets of measurements captured similar patterns of structure in mixed conifer–broadleaf forests.Further,cluster analysis identified six forest structural complexity classes includingtwo low-complexity classes and four high-complexity classes that were distributed in different elevation ranges.In this study,we could reliably analyze the structural complexity of mixed conifer–broadleaf forests using a simple and easy to calculate set of forest structural attributes derived from airborne Li DAR data and high-resolution aerial photography.This study provides a good example of the use of airborne Li DAR data sets for wider purposes in forest ecology as well as in forest management.
文摘Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The vertical structure was defined by three strata in the coniferous forests and two strata in the broadleaved forests. Timber harvesting in Abies religiosa and Quercus laurina forests and fires generated by humans in Pinus hartwegii forests impeded the recruitment of saplings. Mature trees were also heavily impacted by logging in Pinus hartwegii forests. On the contrary, Alnusjorullensis forests were increas- ing due to the disturbance of Pinus and Quercus forests, as well aban- doned crop lands within the park. A combination of logging, uncon- trolled fire, and grazing appears to be compromising the recruitment of important tree species in this national park. These factors, together with human settlements, have also increased the proportion of early succes- sional species. Changes in forest structure from human disturbance indicate a need to control these activities if conservation goals are not to be compromised.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41730641)Project from Ministry of Science and Technology of China(Basic Research project:2014FY110600 and 13-5 Project:2016YFA0600802).
文摘Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.
基金financially supported by Ministry of Science and Technology,China (Project No.2015FY210200–15)。
文摘Background: Schima genus of Theaceae is confined to subtropics and tropics of South, East and Southeast Asia.Thirteen species of Schima are distributed in subtropical China. Many of them appear as dominant canopy species in the subtropical forests. To date, Schima species richness distribution patterns of China have remained unknown.Meanwhile, there has been a longtime debate as to whether forests dominated by Schima species are early or late successional forests. We aim to clarify Schima species richness patterns and these species' roles in the forest succession and regeneration dynamics of the subtropical ecosystem in Yunnan Province, China.Method: We mapped Schima species richness distribution patterns in China. Based on 71 vegetation plots, we analyzed forest characteristics, population structure, and regeneration dynamics of Schima species in Yunnan.Results: Yunnan was found to harbor the greatest richness and the highest rarity-weighted richness of Schima species in the subtropical regions of China. We classified five primary and six secondary forest types containing Schima species as one of dominants. Yunnan had the high floristic diversity and varying stand structure of forests containing Schima species. The Schima species studied generally had a sporadic regeneration type and a long lifespan. Four species(Schima argentea, Schima villosa, Schima sinensis, Schima sericans) were shade-intolerant. But three species(Schima noronhae, Schima khasiana and Schima wallichii) were considered as bi-modal type species having shade-intolerant and shade-tolerant traits. Schima noronhae was seen to be a top dominant in late successional forests, while S. wallichii was found as a top-dominant in early or middle or late successional forests. S.khasiana, Schima villosa, Schima sinensis usually appeared as a top dominant in early or middle successional secondary forests, though they also presented as a second dominant in late-successional forests. Schima argentea and Schima sericans dominated only in the early or middle/seral successional forests. Schima species' regeneration establishment depended mainly on forest canopy gap formation through moderate human and natural disturbances.Conclusions: Yunnan has high species richness and rarity-weighted richness of Schima. Both moderate human and natural disturbances have provided regeneration niches for Schima species. Some of the Schima species studied as a second dominant(rare as the top-dominant) present in the late-successional forests. Some of them are more often as the top-dominant in early or middle successional forests, where as time goes by the dominance of Schima species would be replaced by their associated dominant taxa such as Castanopsis species.
基金The Department of Biotechnology,New Delhi provided principal funding through a grant to US(BT/PR7928/NDB/52/9/2006)
文摘The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland evergreen rainforest' formation and exhibit striking similarities and conspicuous differences with the equatorial rainforests in Asia-Pacific as well as tropical seasonal rainforests in southwestern China near the Tropic of Cancer. We found these common attributes of the rainforests in Meghalaya: familial composition with predominance of Euphorbiaceae, Lauraceae, Meliaceae, Moraceae, Myrsiticaceae,Myrtaceae and Rubiaceae; deciduousness in evergreen physiognomy; dominance of mega-and mesophanerophytic life-forms; abundance of species with low frequency of occurrence(rare and aggregated species); low proportional abundance of the abundant species; and truncated lognormal abundance distribution. The levels of stand density and stand basal area were comparable with seasonal rainforests in southwestern China, but were lower than equatorial rainforests. Tropical Asian species predominated flora, commanding 95% of the abundance. The differences include overall low stature(height) of the forest, inconspicuous stratification in canopy, fewer species and individuals of liana, thicker understory,higher proportion of rare species, absence of locally endemic species and relatively greater dominance of Fagaceae and Theaceae. The richness of species per hectare(S) was considerably lower at higher latitudes in Meghalaya than in equatorial rainforests, but was comparable with seasonal rainforests. Shannon's diversity index(H’=4.40 nats for ≥10 cm gbh and 4.25 nats for ≥30 cm gbh) was lower on higher latitudes in Meghalaya in comparison to species-rich equatorial rainforests, but it was the highest among all lowland rainforests near the Tropic of Cancer.
基金National Key Technologies Research and Development Program of China(No.2012BAD22B04)
文摘In order to identify a harvesting model which is beneficial for broadleaf-Korean pine mixed forest (BKF) sustainability, we investigated four types of harvested stands which have been logged with intensities of 0 (T0, control), 15% (T1, low intensity), 35% (T2, moderate intensity), and 100% (T3, clear-cutting), and examined the impacts of logging intensity on composition and structure of these stands. Results showed that there were no significant differences between To and T1 for all structural characteristics, except for density of seeding and large trees. The mean diameter at breast height (DBH, 1.3 m above the ground), stem density and basal area of large trees in T2 were significantly lower than in To, while the density of seedlings and saplings were significantly higher in T2 than in To. Structural characteristics in T3 were entirely different from To. Dominant tree species in primary BKF comprised 93%, 85%, 45% and 10% of the total basal area in T0, T1, T2 and T3, respectively. Three community similarity indices, the Jaccard's similarity coefficient (Cj); the Morisita-Hom index (CMH); and the Bray-Curtis index (CN), were the highest for T0 and T1, followed by T0 and T2, and T0 and T3, in generally. These results suggest that effects of harvesting on forest composition and structure are related to logging intensities. Low intensity harvesting is conductive to preserving forest structure and composition, allowing it to recover in a short time period. The regime characterized by low logging intensity and short rotations appears to be a sustainable harvesting method for BKF on the Changbai Mountains.
基金This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq(grants 454008/2014-7 and 435598/2018-0)Fundação de ApoioàPesquisa do Estado de Minas Gerais—FAPEMIG(grant APQ 2165/14)F.A.C.holds a CNPq productivity fellowship.
文摘Elucidating woody community diversity and structure change along environmental gradients is still a central issue of tropical forest ecology. We have evaluated changes in alpha and beta diversity, community composition and structure of woody communities along an elevational gradient in Dwarf Cloud Forests, Southeast Brazil. We selected five areas along an elevational gradient(1,300-1,600 m asl), and randomly allocated 10 plots(10 m × 20 m) in each area in the Ibitipoca State Park(ISP), Serra da Mantiqueira, southeastern Brazil. All woody species(diameter at breast height ≥ 5.0 cm) were collected for taxonomic identification. Thus, we analysed the woody communities based on a phytosociological approach. Overall, 147 species and 37 families were recorded, distributed in 2,303 individuals. No differences in the species richness pattern were observed between areas using the rarefaction and extrapolation curves. Significant differences in species composition and structure between areas were observed. The high beta diversity observed, corroborated by the Jaccard coefficient, increases with decreasing altitude. Our results showed that woody communities in the studied Dwarf Cloud Forests have a higher diversity and structural variability along elevational gradient.
基金This study was supported in part by the Science Fund of the Fujian Provincial Department of Education (Grant No. K98040)
文摘The short-term effects of selection curing of different intensities on the forest structure and species diversity of evergreen broad-leaved forest in northern Fujian Province were investigated and analyzed. The results showed that selection curing of low and medium intensities caused little variation in the forest structure. After curing, the dominant species retained their leading status in the community. However, the community structure changed significantly following selection curing of high and extra-high intensities; the status of the dominant species of the community declined dramatically. Some tree species began to disappear from the sampling plots. Except for extra-high intensity curing, the diversity of tree species did not change significantly for the other three curing intensities. However, the evenness of the stands was very different among the four kinds of curing plots. For low and medium intensity selection cutting, the evenness declined slightly. For extra-high intensity selection curing, the evenness increased to some extent, which might be due to a more even distribution of tree species after curing. CuRing operations resulted in some adverse reactions to development of arborous species diversity of evergreen broad-leaved forest, particularly serious damage to the forest canopy. But the rational selection cuttings, which may benefit the restoration and maintenance of species diversity over a long period and may come about from the variations in environmental factors such as sunlight, temperature and humidity.