The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit...The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.展开更多
Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time ...Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.展开更多
锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(un...自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(unscented Kalman filter,UKF)难以准确估计小车的位置和姿态。针对此问题,将误差序列协方差估计与遗忘因子同时引入UKF进行改进,提出了一种改进的自适应UKF自动落布车位姿估计算法。通过误差序列协方差估计对观测噪声协方差矩阵R进行调整,引入遗忘因子对R进行自适应更新,进而得到自动落布车位姿的最优估计。实验结果表明,在高斯噪声环境下,改进的UKF算法比其他算法具有更好的鲁棒性和估计精度。改进后的UKF位姿估计算法代入Cartographer算法后建图误差值减小,表明此算法能够在室内复杂环境下达到更加精确的位姿估计。展开更多
永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(re...永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。展开更多
To address the problem that model uncertainty and unknown time-varying system noise hinder the filtering accuracy of the autonomous navigation system of satellite constellation,an autonomous navigation method of satel...To address the problem that model uncertainty and unknown time-varying system noise hinder the filtering accuracy of the autonomous navigation system of satellite constellation,an autonomous navigation method of satellite constellation based on the Unscented Kalman Filter with Adaptive Forgetting Factors(UKF-AFF)is proposed.The process noise covariance matrix is estimated online with the strategy that combines covariance matching and adaptive adjustment of forgetting factors.The adaptive adjustment coefficient based on squared Mahalanobis distance of state residual is employed to achieve online regulation of forgetting factors,equipping this method with more adaptability.The intersatellite direction vector obtained from photographic observations is introduced to determine the constellation satellite orbit together with the distance measurement to avoid rank deficiency issues.Considering that the number of available measurements varies online with intersatellite visibility in practical applications such as time-varying constellation configurations,the smooth covariance matrix of state correction determined by innovation and gain is adopted and constructed recursively.Stability analysis of the proposed method is also conducted.The effectiveness of the proposed method is verified by the Monte Carlo simulation and comparison experiments.The estimation accuracy of constellation position and velocity of UKF-AFF is improved by 30%and 44%respectively compared to those of the extended Kalman filter,and the method proposed is also better than other several adaptive filtering methods in the presence of significant model uncertainty.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
基金supported by National Key Research and Development Program of China(2020YFB0505803)National Key Research and Development Program of China(2016YFB0501700)。
文摘The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China (No. 60272079), and the Hi-Tech Research and Development Program (863) of China (No. 2003AA123310)
文摘Considering that channel estimation plays a crucial role in coherent detection, this paper addresses a method of Recursive-least-squares (RLS) channel estimation with adaptive forgetting factor in wireless space-time coded multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Because there are three different forgetting factor scenarios including adaptive, two-step and conventional ones applied to RLS channel estimation, this paper describes the principle of RLS channel estimation and analyzes the impact of different forgetting factor scenarios on the performances of RLS channel estimation. Simulation results proved that the RLS algorithm with adaptive forgetting factor (RLS-A) outperformed that with two-step forgetting factor (RLS-T) or with conventional forgetting factor (RLS-C) in both estimation accuracy and robustness over the multiple-input multiple-output (MIMO) channel, i.e., a wide-sense stationary uncorrelated scattering (WSSUS) and frequency-selective slowly fading channel. Hence, we can employ the RLS-A method by adjusting forgetting factor adaptively to track and estimate channel state parameters successfully in space-time coded MIMO-OFDM systems.
文摘永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。
基金Associate Professor Hongzhuan Qiu for his valuable comments and suggestions in formula derivation and proofreading of this paper.
文摘To address the problem that model uncertainty and unknown time-varying system noise hinder the filtering accuracy of the autonomous navigation system of satellite constellation,an autonomous navigation method of satellite constellation based on the Unscented Kalman Filter with Adaptive Forgetting Factors(UKF-AFF)is proposed.The process noise covariance matrix is estimated online with the strategy that combines covariance matching and adaptive adjustment of forgetting factors.The adaptive adjustment coefficient based on squared Mahalanobis distance of state residual is employed to achieve online regulation of forgetting factors,equipping this method with more adaptability.The intersatellite direction vector obtained from photographic observations is introduced to determine the constellation satellite orbit together with the distance measurement to avoid rank deficiency issues.Considering that the number of available measurements varies online with intersatellite visibility in practical applications such as time-varying constellation configurations,the smooth covariance matrix of state correction determined by innovation and gain is adopted and constructed recursively.Stability analysis of the proposed method is also conducted.The effectiveness of the proposed method is verified by the Monte Carlo simulation and comparison experiments.The estimation accuracy of constellation position and velocity of UKF-AFF is improved by 30%and 44%respectively compared to those of the extended Kalman filter,and the method proposed is also better than other several adaptive filtering methods in the presence of significant model uncertainty.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.