In the process of riveting an MB15 forging die,cracks were discovered emerging along the longitudinal direction and near the riveting hole.Through fracture analysis,microscopic observation,energy spectrum analysis,met...In the process of riveting an MB15 forging die,cracks were discovered emerging along the longitudinal direction and near the riveting hole.Through fracture analysis,microscopic observation,energy spectrum analysis,metallographic examination,and hardness test,the properties and causes of the cracks are discussed.The results indicate that the cracking type is intergranular brittle cracking,occurring during the forging stage.Furthermore,the recrystallization at the crack site is found to be incomplete,which is attributed to the low deformation temperature.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
A new design technique for the long life hot forging die has been proposed. By finite element analysis, the reason .for the failure of hot forging die was analyzed and it was concluded that thermal stress is the main ...A new design technique for the long life hot forging die has been proposed. By finite element analysis, the reason .for the failure of hot forging die was analyzed and it was concluded that thermal stress is the main reason for the failure of hot forging die. Based on this conclusion, the whole hot forging die was divided into the substrate part and the heat-resistant part according to the thermal stress distribution. Moreover, the heat-resistant part was further subdivided into more zones and the material of each zone was reasonably selected to ensure that the hot forging die can work in an elastic state. When compared with the existing techniques, this design can greatly increase the service life because the use of multi-materials can alleviate the thermal stress in hot forging die.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC cerami...In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.展开更多
A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the ...A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the orthogonal test with the finite element simulation test in the forging process.The process parameters with the greatest influence on the mold wear during the die forging process and the optimal solution of the process parameters to minimize the wear depth of the mold are derived.The hot die forging process is taken as an example,and a mold wear correction model for hot forging processes is derived based on the Archard wear model.Finite element simulation analysis of die wear process in hot die forging based on deform software is performed to study the relationship between the wear depth of the mold working surface and the die forging process parameters during hot forging process.The optimized process parameters suitable for hot forging are derived by orthogonal experimental design and analysis of variance.The average wear amount of the mold during the die forging process is derived by calculating the wear depth of a plurality of key nodes on the mold surface.Mold life for the entire production process is predicted based on average mold wear depth and polynomial fitting.展开更多
To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 3...To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.展开更多
To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die ...To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.展开更多
The fatigue behavior of cemented carbide die under service load in the multistage cold forging of steel was investigated. It was found that the fatigue cracks do not initiate at the stress concentration position and t...The fatigue behavior of cemented carbide die under service load in the multistage cold forging of steel was investigated. It was found that the fatigue cracks do not initiate at the stress concentration position and the crack initiation position can be classified to three types. The crack initiation position can be predicted by FEM only when the plastic deformation of the die is considered.展开更多
The alteration of the strength, hardness and impact ductility of 5CrNiMo steel using three different additions of RE La element is studied in this paper. The mechanical properties of 5CrNiMo steel with RE La additions...The alteration of the strength, hardness and impact ductility of 5CrNiMo steel using three different additions of RE La element is studied in this paper. The mechanical properties of 5CrNiMo steel with RE La additions are be compared with that of the 5CrNiMo steel on the same heat-treatment condition without RE La element addition. The results show that the strength, hardness and impact ductility of 5CrNiMo steel will be improved obviously when the content of RE La element is proper, and as the content of RE La element is 0.033%(mass fraction), the 5CrNiMo steel has the best mechanical properties.展开更多
Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temp...Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.展开更多
The paper introduced the 5 CrMnMo steel, including the chemical composition, the heat treatment technology, the forging die working condition, and the invalidation form (such as the cavity arris wear, the cavity subs...The paper introduced the 5 CrMnMo steel, including the chemical composition, the heat treatment technology, the forging die working condition, and the invalidation form (such as the cavity arris wear, the cavity subsidence, the cold and the heat fatigue crackle). Then gave some precautions for prolonging the mould life by improving the heat treatment technology.展开更多
Die forging process of piston tail and its key technology are analyzed in detail. The key issue is to reduce friction force between punch and billet to facilitate metal flow towards two ends. Three-step forging scheme...Die forging process of piston tail and its key technology are analyzed in detail. The key issue is to reduce friction force between punch and billet to facilitate metal flow towards two ends. Three-step forging scheme is used, namely preforming, final forging and cutting the flash. Preforming is critical for the success of the whole process and two schemes are compared. First two steps are simulated using 3D-Deform software. Simulation results show that the process is feasible and its validity is verified.展开更多
The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was ...The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was subjected to multi-pass forging to optimize the microstructural heterogeneity(texture)which can cause mechanical behavior anisotropy of titanium alloys.Results show that after die forging,Ti55511 components exhibit different microstructures and textures in different local areas.No<100>fiber texture is found in all areas with different degrees of deformation.Dynamic recrystallization occurs in the area where large strain occurs during the early stage of die forging.Basket-weave microstructure forms in most local areas.展开更多
To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different r...To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different ratios of Ni60:Cr3C2 were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy-dispersive X-ray analysis(EDX) and micro-hardness tester,respectively.Specific heat capacity and thermal conductivity were measured by Laser Thermal Constant Meter.Thermal expansion coefficient and elastic modulus were measured by Dynamic Mechanical Thermal Analyzer and Electro-Hydraulic Servocontrolled Testing System,respectively.The results indicated that Ni60+50wt% Cr3C2 composite coating had dense and homogeneous structure,as well as a metallurgical bonding with the substrate.With the increase of Cr3C2 content,volume of chromium-containing compounds in the composite coating increased,microhardness increased and microstructure refined.The thermal physical parameters results showed that Ni60+50wt% Cr3C2 composite coating was overall worse than W6Mo5Cr4V2,but had a higher hot yield strength to alleviate hot fatigue and surface hot wear of hot forging die during hot forging and thus improve the service life of hot forging die.展开更多
The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure...The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.展开更多
The microstructure and mechanical properties of nodular cast iron produced by the melted metal die forging process (MMDF for short) were experimentally researched.The main obtained results are : the nodular cast ir...The microstructure and mechanical properties of nodular cast iron produced by the melted metal die forging process (MMDF for short) were experimentally researched.The main obtained results are : the nodular cast iron produced by this process can be machined as easy as traditional one only if holding at the remained temperature for 4 h ; its strength and plasticity are obviously higher than those of traditional ones ; the graphite size arrived at grade 8 , and the graphite spheroidizing arrived at grade 1 or 2 , but a streamline molded distribution of the graphite slightly appeared.Both of the strength and plasticity increased with the pressure when the pressure holding time was larger than its critical value.A new way to produce high properties nodular cast iron was provided.展开更多
This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for ob...This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for obtaining of hollowed products.The designed process is verified theoretically by means of numerical simulations based on finite element method with assumption of 3D state of strain.The following factors are considered in the analysis:material flow kinematics,strain distribution,temperature distribution and force of process.On the basis of results,it is stated that the application of designed technology allows for obtaining of a product of assumed quality.A comparison is made between material consumption in analyzed process and material consumption in typical metal forming methods,also in used at present technology of shaft manufacturing by machining only.It is stated that the application of forging in the three-slide forging press allows for a considerable decrease of manufacturing costs due to material savings and decrease of labor consumption of operations at finishing.展开更多
基金Key R&D Plan Projects in Hubei Province(Grant No.2021BID001)the Research on Multiple Regression and Fitting Technology of Simulation Data for Dynamic Umbrella Opening of Lifesaving Umbrella(Grant No.HX2021157)。
文摘In the process of riveting an MB15 forging die,cracks were discovered emerging along the longitudinal direction and near the riveting hole.Through fracture analysis,microscopic observation,energy spectrum analysis,metallographic examination,and hardness test,the properties and causes of the cracks are discussed.The results indicate that the cracking type is intergranular brittle cracking,occurring during the forging stage.Furthermore,the recrystallization at the crack site is found to be incomplete,which is attributed to the low deformation temperature.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.
基金the National Natural Science Foundation of China (No. 50675165).
文摘A new design technique for the long life hot forging die has been proposed. By finite element analysis, the reason .for the failure of hot forging die was analyzed and it was concluded that thermal stress is the main reason for the failure of hot forging die. Based on this conclusion, the whole hot forging die was divided into the substrate part and the heat-resistant part according to the thermal stress distribution. Moreover, the heat-resistant part was further subdivided into more zones and the material of each zone was reasonably selected to ensure that the hot forging die can work in an elastic state. When compared with the existing techniques, this design can greatly increase the service life because the use of multi-materials can alleviate the thermal stress in hot forging die.
基金Funded by the National Natural Science Foundation of China (No. 50675165)
文摘In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.
基金This work was supported in part by the National Natural Science Foundation of China(No.51575008).
文摘A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the orthogonal test with the finite element simulation test in the forging process.The process parameters with the greatest influence on the mold wear during the die forging process and the optimal solution of the process parameters to minimize the wear depth of the mold are derived.The hot die forging process is taken as an example,and a mold wear correction model for hot forging processes is derived based on the Archard wear model.Finite element simulation analysis of die wear process in hot die forging based on deform software is performed to study the relationship between the wear depth of the mold working surface and the die forging process parameters during hot forging process.The optimized process parameters suitable for hot forging are derived by orthogonal experimental design and analysis of variance.The average wear amount of the mold during the die forging process is derived by calculating the wear depth of a plurality of key nodes on the mold surface.Mold life for the entire production process is predicted based on average mold wear depth and polynomial fitting.
文摘To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.
基金Project(51375042)supported by the National Natural Science Foundation of ChinaProject supported by Beijing Laboratory of Modern Transport Metal Materials and Processing Technology,China
文摘To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.
文摘The fatigue behavior of cemented carbide die under service load in the multistage cold forging of steel was investigated. It was found that the fatigue cracks do not initiate at the stress concentration position and the crack initiation position can be classified to three types. The crack initiation position can be predicted by FEM only when the plastic deformation of the die is considered.
文摘The alteration of the strength, hardness and impact ductility of 5CrNiMo steel using three different additions of RE La element is studied in this paper. The mechanical properties of 5CrNiMo steel with RE La additions are be compared with that of the 5CrNiMo steel on the same heat-treatment condition without RE La element addition. The results show that the strength, hardness and impact ductility of 5CrNiMo steel will be improved obviously when the content of RE La element is proper, and as the content of RE La element is 0.033%(mass fraction), the 5CrNiMo steel has the best mechanical properties.
基金Funded by the Fundamental Research Funds for the Central University (No.2010-II-025)the National Natural Science Foundation of China(No.50675165)
文摘Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.
文摘The paper introduced the 5 CrMnMo steel, including the chemical composition, the heat treatment technology, the forging die working condition, and the invalidation form (such as the cavity arris wear, the cavity subsidence, the cold and the heat fatigue crackle). Then gave some precautions for prolonging the mould life by improving the heat treatment technology.
文摘Die forging process of piston tail and its key technology are analyzed in detail. The key issue is to reduce friction force between punch and billet to facilitate metal flow towards two ends. Three-step forging scheme is used, namely preforming, final forging and cutting the flash. Preforming is critical for the success of the whole process and two schemes are compared. First two steps are simulated using 3D-Deform software. Simulation results show that the process is feasible and its validity is verified.
基金National Science and Technology Project of China(JPPT-135-GH-2-017)Fellowship of China Postdoctoral Science Foundation(2022M720399)。
文摘The effect of die forging on the microstructure evolution and deformation behavior of metastable β-titanium alloy Ti55511 was investigated by electron backscatter diffraction.Before die forging,the alloy Ti55511 was subjected to multi-pass forging to optimize the microstructural heterogeneity(texture)which can cause mechanical behavior anisotropy of titanium alloys.Results show that after die forging,Ti55511 components exhibit different microstructures and textures in different local areas.No<100>fiber texture is found in all areas with different degrees of deformation.Dynamic recrystallization occurs in the area where large strain occurs during the early stage of die forging.Basket-weave microstructure forms in most local areas.
基金Funded by the National Natural Science Foundation of China (No.50675165)the Fundamental Research Funds for the Central Universities (No.2010-II-025)
文摘To satisfy performance and long life requirements for hot forging die,Ni60-Cr3C2 composite coatings were prepared on the high-speed steel W6Mo5Cr4V2 using laser cladding technology.Laser clad coatings with different ratios of Ni60:Cr3C2 were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy-dispersive X-ray analysis(EDX) and micro-hardness tester,respectively.Specific heat capacity and thermal conductivity were measured by Laser Thermal Constant Meter.Thermal expansion coefficient and elastic modulus were measured by Dynamic Mechanical Thermal Analyzer and Electro-Hydraulic Servocontrolled Testing System,respectively.The results indicated that Ni60+50wt% Cr3C2 composite coating had dense and homogeneous structure,as well as a metallurgical bonding with the substrate.With the increase of Cr3C2 content,volume of chromium-containing compounds in the composite coating increased,microhardness increased and microstructure refined.The thermal physical parameters results showed that Ni60+50wt% Cr3C2 composite coating was overall worse than W6Mo5Cr4V2,but had a higher hot yield strength to alleviate hot fatigue and surface hot wear of hot forging die during hot forging and thus improve the service life of hot forging die.
基金Project supported by Key Project of Science and Technology of Hebei Province (04212201D) and Research Foundationfor theReturned Overseas Chinese Scholars of State Education Ministry
文摘The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.
基金Item Sponsored by National Natural Science Foundation of China ( 51275031 )Innovation Fund for Technology Based Firms of China ( 11C26211304055 )
文摘The microstructure and mechanical properties of nodular cast iron produced by the melted metal die forging process (MMDF for short) were experimentally researched.The main obtained results are : the nodular cast iron produced by this process can be machined as easy as traditional one only if holding at the remained temperature for 4 h ; its strength and plasticity are obviously higher than those of traditional ones ; the graphite size arrived at grade 8 , and the graphite spheroidizing arrived at grade 1 or 2 , but a streamline molded distribution of the graphite slightly appeared.Both of the strength and plasticity increased with the pressure when the pressure holding time was larger than its critical value.A new way to produce high properties nodular cast iron was provided.
基金the Structural Funds in the Operational Programme-Innovative Economy (IE OP) Financed from the European Regional Development Fund(No.POIG.01.01.02-00-015/08-00)
文摘This paper presents theoretical analysis of unconventional forging process of hollowed shaft from Ti-6Al-4V alloy in a three-slide forging press.This method in comparison with other metal forming methods allows for obtaining of hollowed products.The designed process is verified theoretically by means of numerical simulations based on finite element method with assumption of 3D state of strain.The following factors are considered in the analysis:material flow kinematics,strain distribution,temperature distribution and force of process.On the basis of results,it is stated that the application of designed technology allows for obtaining of a product of assumed quality.A comparison is made between material consumption in analyzed process and material consumption in typical metal forming methods,also in used at present technology of shaft manufacturing by machining only.It is stated that the application of forging in the three-slide forging press allows for a considerable decrease of manufacturing costs due to material savings and decrease of labor consumption of operations at finishing.