Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su...Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.展开更多
【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechan...【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.展开更多
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac...Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for...Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.展开更多
In response to the inherent requirements of low-carbon land spatial planning in Jiangxi Province and the lack of existing research,this paper explored the mechanism of spatial form elements of Poyang Lake urban agglom...In response to the inherent requirements of low-carbon land spatial planning in Jiangxi Province and the lack of existing research,this paper explored the mechanism of spatial form elements of Poyang Lake urban agglomeration on urban carbon emissions.Based on generalized linear regression and geographically weighted regression models,this paper analyzed the spatiotemporal distribution characteristics of carbon emissions,the spatiotemporal relationship between urban form index and carbon emissions,and the spatial differentiation of the intensity of dominant factors from 63 county-level administrative units in the Poyang Lake city group from 2005 to 2020.The results showed that:①The carbon emissions of urban agglomerations around Poyang Lake are generally increasing,and the spatial distribution of carbon emissions is characterized by high-value concentration in the middle and low-value agglomeration in pieces;②The main driving factor for the spatial heterogeneity of carbon emissions was the expansion of built-up area;③Improving urban compactness and optimizing urban form could effectively reduce urban carbon emissions.The results showcased the correlation between urban spatial landscape pattern and the spatiotemporal distribution of carbon emissions,which could make the low-carbon land spatial planning in the Poyang Lake city group more reasonable and practical.展开更多
Biological tests provide information on the medical analysis requested by both the patient and the prescriber. It is a communication link between the prescriber and the laboratory staff. The lack of some information o...Biological tests provide information on the medical analysis requested by both the patient and the prescriber. It is a communication link between the prescriber and the laboratory staff. The lack of some information on request forms not only affects the drafting quality of the test and patient care, but could also make thousands of data produced by healthcare centers unusable. The aim of this study was to assess the drafting quality of request forms submitted to the Malaria and Parasitology Units at the Institut Pasteur de Côte d’Ivoire. Methods: It was a descriptive cross-sectional study to assess the drafting quality of request forms of various prescribers received at the Institut Pasteur de Côte d’Ivoire. This study was conducted at the Malaria and Parasitology Units, department of Parasitology and Mycology (Institut Pasteur de Côte d’Ivoire), from 6<sup>th</sup> December 2020 to 6<sup>th</sup> December 2021. The information on each request forms was recorded on a data collection form designed for this purpose. Each data collection form corresponds to a request forms and each test to a patient. Results: Out of a total of 1990 request forms received, the patient’s age and sex were missing on 18% and 26.8% of the tests respectively. More than half (51.80%) of request forms did not indicate the patient’s place of residence. Clinical information was not provided on 45.90% of the tests. Prescribers omitting their signatures were 51%, stamps were 50.3% and contacts were 71.2%. Only 5.4% of request forms were of good drafting quality. Providing all the required information on the forms could facilitate the use and analysis of data and samples.展开更多
Rural marriage has characteristics such as close relationship with labor production,deep integration of traditional culture,shy and introverted expression of subjective emotions,and illegal and rough marriage.The civi...Rural marriage has characteristics such as close relationship with labor production,deep integration of traditional culture,shy and introverted expression of subjective emotions,and illegal and rough marriage.The civilization evolution of rural marriage forms is moving towards a path that is conducive to the development of production and the pursuit of happiness for farmers,the construction of rural spiritual civilization,and the comprehensive development of rural society.This study analyzes the direction of the evolution of rural marriage form civilization,predicts the trend of rural marriage form civilization evolution,and proposes the future path of rural marriage form civilization evolution,including adhering to human’s most original value expectations of marriage life,drawing nourishment from excellent traditional Chinese culture,and continuously adjusting marriage and family policy tools to keep up with changes in the world of life.展开更多
Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloy...Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.展开更多
The lightweight of high-end equipment relies on high mechanical properties magnesium(Mg) alloy structural components, because it is the best way to improve equipment service performance and reduce energy consumption. ...The lightweight of high-end equipment relies on high mechanical properties magnesium(Mg) alloy structural components, because it is the best way to improve equipment service performance and reduce energy consumption. This article summarizes the current progress and characteristics of large-scale high-performance Mg alloy components by analyzing the strengthening-toughening mechanisms, characteristics of plastic forming, and the preparation of large high mechanical properties forging blanks. Due to the lack of breakthroughs in the key technologies for forming large-scale Mg alloy components, their uniformity of mechanical properties and consistency are poor, the forming accuracy of components is low, and the production cost is high, which limit their engineering application and restrict the lightweight level of high-end equipment. In view of the above problems, the forming trends and research directions of large-scale and high mechanical properties Mg alloy components are proposed in this paper. It can provide help for the breakthrough of the key technology of large-scale Mg alloy components with high mechanical properties and expand the application of Mg alloy in high-end products.展开更多
In the past,scholars have divided the history of Chinese papermaking into different stages based on the development of ancient papermaking technology,emphasizing the development and progress of papermaking in differen...In the past,scholars have divided the history of Chinese papermaking into different stages based on the development of ancient papermaking technology,emphasizing the development and progress of papermaking in different historical periods but paying less attention to the changes in the form of paper.Here,the stages are defined based on changes in use and function rather than technological developments.When this approach is combined with the history of printing,books,calligraphy,and painting,the history of Chinese papermaking can be divided into the writing paper,writing and printing paper,printing paper,and calligraphy and painting paper periods.Different periods of paper have significant differences in texture,form,and performance owing to their different applications.This significant difference provides a reference for the identification of ancient papers and reveals the internal connection between the history of printing,books,calligraphy,painting,and papermaking.展开更多
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o...The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kett...The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kettle to realize process intensification.In view of this,the fluid volume function method of computational fluid dynamics numerical simulation was used to investigate the film formation and surface renewal characteristics of horizontal polycondensation kettle under different operating conditions,including viscosity,rotating speed and liquid height.The results show that the viscosity and rotating speed were positively correlated with the film area and surface renewal in the pre-polycondensation stage.However,increasing the viscosity by several orders of magnitude in the final polycondensation kettle,the larger the film area and film thickness,but the overall surface renewal of the disk decreased.Therefore,a hexagonal hole disk is designed.By comparison,it is found that the film is more uniform,the surface update frequency is higher,and the power consumption can be reduced by more than 20%.展开更多
Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming metho...Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces.展开更多
Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many ...Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many parameters,which is not conducive to the exploration of correct spatial correspondence between the float and reference images.Meanwhile,the unidirectional registration may involve the deformation folding,which will result in the change of topology during registration.To address these issues,this work has presented an unsupervised image registration method using the free form deformation(FFD)and the symmetry constraint‐based generative adversarial networks(FSGAN).The FSGAN utilises the principle component analysis network‐based structural representations of the reference and float images as the inputs and uses the generator to learn the FFD model parameters,thereby producing two deformation fields.Meanwhile,the FSGAN uses two discriminators to decide whether the bilateral registration have been realised simultaneously.Besides,the symmetry constraint is utilised to construct the loss function,thereby avoiding the deformation folding.Experiments on BrainWeb,high grade gliomas,IXI and LPBA40 show that compared with state‐of‐the‐art methods,the FSGAN provides superior performance in terms of visual comparisons and such quantitative indexes as dice value,target registration error and computational efficiency.展开更多
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
文摘Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.
基金Guangxi Natural Science Foundation(2024GXNSFAA010469,2021GXNSFBA196028)Science and Technology Development Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT137,Guinongke 2022JM86)。
文摘【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.
文摘Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金supported by National Natural Science Foundation of China(Grant Nos.51975202(Junjia Cui received the grant)and 52175315(Guangyao Li received the grant)).
文摘Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters.
基金by the 2022 National Natural Foundation of China(42261046)The 2021 Project for Humanities and Social Sciences of Jiangxi Higher Education Institutions(JC21237).
文摘In response to the inherent requirements of low-carbon land spatial planning in Jiangxi Province and the lack of existing research,this paper explored the mechanism of spatial form elements of Poyang Lake urban agglomeration on urban carbon emissions.Based on generalized linear regression and geographically weighted regression models,this paper analyzed the spatiotemporal distribution characteristics of carbon emissions,the spatiotemporal relationship between urban form index and carbon emissions,and the spatial differentiation of the intensity of dominant factors from 63 county-level administrative units in the Poyang Lake city group from 2005 to 2020.The results showed that:①The carbon emissions of urban agglomerations around Poyang Lake are generally increasing,and the spatial distribution of carbon emissions is characterized by high-value concentration in the middle and low-value agglomeration in pieces;②The main driving factor for the spatial heterogeneity of carbon emissions was the expansion of built-up area;③Improving urban compactness and optimizing urban form could effectively reduce urban carbon emissions.The results showcased the correlation between urban spatial landscape pattern and the spatiotemporal distribution of carbon emissions,which could make the low-carbon land spatial planning in the Poyang Lake city group more reasonable and practical.
文摘Biological tests provide information on the medical analysis requested by both the patient and the prescriber. It is a communication link between the prescriber and the laboratory staff. The lack of some information on request forms not only affects the drafting quality of the test and patient care, but could also make thousands of data produced by healthcare centers unusable. The aim of this study was to assess the drafting quality of request forms submitted to the Malaria and Parasitology Units at the Institut Pasteur de Côte d’Ivoire. Methods: It was a descriptive cross-sectional study to assess the drafting quality of request forms of various prescribers received at the Institut Pasteur de Côte d’Ivoire. This study was conducted at the Malaria and Parasitology Units, department of Parasitology and Mycology (Institut Pasteur de Côte d’Ivoire), from 6<sup>th</sup> December 2020 to 6<sup>th</sup> December 2021. The information on each request forms was recorded on a data collection form designed for this purpose. Each data collection form corresponds to a request forms and each test to a patient. Results: Out of a total of 1990 request forms received, the patient’s age and sex were missing on 18% and 26.8% of the tests respectively. More than half (51.80%) of request forms did not indicate the patient’s place of residence. Clinical information was not provided on 45.90% of the tests. Prescribers omitting their signatures were 51%, stamps were 50.3% and contacts were 71.2%. Only 5.4% of request forms were of good drafting quality. Providing all the required information on the forms could facilitate the use and analysis of data and samples.
文摘Rural marriage has characteristics such as close relationship with labor production,deep integration of traditional culture,shy and introverted expression of subjective emotions,and illegal and rough marriage.The civilization evolution of rural marriage forms is moving towards a path that is conducive to the development of production and the pursuit of happiness for farmers,the construction of rural spiritual civilization,and the comprehensive development of rural society.This study analyzes the direction of the evolution of rural marriage form civilization,predicts the trend of rural marriage form civilization evolution,and proposes the future path of rural marriage form civilization evolution,including adhering to human’s most original value expectations of marriage life,drawing nourishment from excellent traditional Chinese culture,and continuously adjusting marriage and family policy tools to keep up with changes in the world of life.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.22JK0479)Research Start-up Project of Xi’an University of Technology(Grant No.101-256082204)+5 种基金International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)Project of Science and Technology Shaanxi Province(No.2023-JC-YB-412)Project of Science and Technology Shaanxi Province(No.2023-JC-QN-0573)Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JHZDZH-0039)Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011).
文摘Magnesium and its alloys,as a promising class of materials,is popular in lightweight application and biomedical implants due to their low density and good biocompatibility.Additive manufacturing(AM)of Mg and its alloys is of growing interest in academia and industry.The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys,which are different from those of traditionally manufactured counterparts.However,the intrinsic mechanisms still remain unclear and need to be in-depth explored.Therefore,this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination,microstructure formation and evolution,and performance improvement,based on presenting a comprehensive and systematic review on the relationship between process parameters,forming quality,microstructure characteristics and resultant performances.Lastly,some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.
基金The financial support from Joint Funds of the National Natural Science Foundation of China (No.U20A20230)the Natural Science Foundation of China (No.52075501)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Key R&D program of Shanxi Province (No.2020XXX015)。
文摘The lightweight of high-end equipment relies on high mechanical properties magnesium(Mg) alloy structural components, because it is the best way to improve equipment service performance and reduce energy consumption. This article summarizes the current progress and characteristics of large-scale high-performance Mg alloy components by analyzing the strengthening-toughening mechanisms, characteristics of plastic forming, and the preparation of large high mechanical properties forging blanks. Due to the lack of breakthroughs in the key technologies for forming large-scale Mg alloy components, their uniformity of mechanical properties and consistency are poor, the forming accuracy of components is low, and the production cost is high, which limit their engineering application and restrict the lightweight level of high-end equipment. In view of the above problems, the forming trends and research directions of large-scale and high mechanical properties Mg alloy components are proposed in this paper. It can provide help for the breakthrough of the key technology of large-scale Mg alloy components with high mechanical properties and expand the application of Mg alloy in high-end products.
文摘In the past,scholars have divided the history of Chinese papermaking into different stages based on the development of ancient papermaking technology,emphasizing the development and progress of papermaking in different historical periods but paying less attention to the changes in the form of paper.Here,the stages are defined based on changes in use and function rather than technological developments.When this approach is combined with the history of printing,books,calligraphy,and painting,the history of Chinese papermaking can be divided into the writing paper,writing and printing paper,printing paper,and calligraphy and painting paper periods.Different periods of paper have significant differences in texture,form,and performance owing to their different applications.This significant difference provides a reference for the identification of ancient papers and reveals the internal connection between the history of printing,books,calligraphy,painting,and papermaking.
基金Supported by R&D Program of Beijing Municipal Education Commission of China(Grant No.KZ200010009041)Beijing Municipal University Youth Top Talents Training Program of China(Grant No.CIT&TCD201704014)Natural Science Foundation of China(Grant No.51475003).
文摘The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金the financial support of the National Key Research and Development Program of China(2020YFA0710202,2018YFC0808805)。
文摘The process of producing high viscosity polyester by transesterification polycondensation needs to adjust the operating conditions and equipment structure of pre-polycondensation kettle and final polycondensation kettle to realize process intensification.In view of this,the fluid volume function method of computational fluid dynamics numerical simulation was used to investigate the film formation and surface renewal characteristics of horizontal polycondensation kettle under different operating conditions,including viscosity,rotating speed and liquid height.The results show that the viscosity and rotating speed were positively correlated with the film area and surface renewal in the pre-polycondensation stage.However,increasing the viscosity by several orders of magnitude in the final polycondensation kettle,the larger the film area and film thickness,but the overall surface renewal of the disk decreased.Therefore,a hexagonal hole disk is designed.By comparison,it is found that the film is more uniform,the surface update frequency is higher,and the power consumption can be reduced by more than 20%.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975278 and 52277055)the Qing Lan Project,the Research Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)under Grant No.MCMS-I-0321G01+2 种基金the Biomedical Engineering Fusion Laboratory of the affiliated Jiangning Hospital of Nanjing Medical University(Grant No.JNYYZXKY202217)the Postgraduate Research&Practice Innovation Program of NUAA(Grant Nos.xcxjh20220114 and xcxjh20220111)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0353).
文摘Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces.
基金supported in part by the National Key Research and Development Program of China under Grant 2018Y FE0206900in part by the National Natural Science Foundation of China under Grant 61871440in part by the CAAIHuawei MindSpore Open Fund.We gratefully acknowledge the support of MindSpore for this research.
文摘Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many parameters,which is not conducive to the exploration of correct spatial correspondence between the float and reference images.Meanwhile,the unidirectional registration may involve the deformation folding,which will result in the change of topology during registration.To address these issues,this work has presented an unsupervised image registration method using the free form deformation(FFD)and the symmetry constraint‐based generative adversarial networks(FSGAN).The FSGAN utilises the principle component analysis network‐based structural representations of the reference and float images as the inputs and uses the generator to learn the FFD model parameters,thereby producing two deformation fields.Meanwhile,the FSGAN uses two discriminators to decide whether the bilateral registration have been realised simultaneously.Besides,the symmetry constraint is utilised to construct the loss function,thereby avoiding the deformation folding.Experiments on BrainWeb,high grade gliomas,IXI and LPBA40 show that compared with state‐of‐the‐art methods,the FSGAN provides superior performance in terms of visual comparisons and such quantitative indexes as dice value,target registration error and computational efficiency.