In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
In this paper, the integral representation for some polyharmonic functions with values in a universal Clifford algebra Cl(Vn,n) is studied and Gauss-mean value formula for triharmonic functions with values in a Clif...In this paper, the integral representation for some polyharmonic functions with values in a universal Clifford algebra Cl(Vn,n) is studied and Gauss-mean value formula for triharmonic functions with values in a Clifford algebra Cl(Vn,n) are proved by using Stokes formula and higher order Cauchy-Pompeiu formula. As application some results about growth condition at infinity are obtained.展开更多
In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases....In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.展开更多
The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space....The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.展开更多
Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)...Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)||. Our results are sharp. In addition, we also generalize Hayman's theorem on integral mean展开更多
Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabc...Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).展开更多
A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obt...A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.展开更多
Discourse markers are among the basic building blocks of spoken language.This study gauges the use of the discourse marker I mean in spoken English,specifically in the talk show setting,with the aim of providing a com...Discourse markers are among the basic building blocks of spoken language.This study gauges the use of the discourse marker I mean in spoken English,specifically in the talk show setting,with the aim of providing a comprehensive description of the pragmatic functions of I mean.After extracting large quantities of extended conversations from various talk shows,a corpus for fur⁃ther extensive discourse analysis will then be established.Our small-scale yet fine-grained study proposes that the core functions of I mean includes reformulation,elaboration,lexical search and interpersonal management.The wide use of discourse markers in TV talk shows serves to promote the logic and organization of interviewing language as well as the overall discourse setting whereby the talk shows proceed smoothly with the interlocutors’dynamic devotion into conversation.展开更多
By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the res...By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.展开更多
The present study examines the pragmatic functions of the discourse marker I mean based on a case study of an American soap opera Desperate Housewives.Four pragmatic functions of I mean are detected and discussed.Amon...The present study examines the pragmatic functions of the discourse marker I mean based on a case study of an American soap opera Desperate Housewives.Four pragmatic functions of I mean are detected and discussed.Among them,two functions are more frequently used including supplementary and explanatory function,reminding and emphasizing function.展开更多
A multi-group pin power reconstruction method that fully exploits nodal information obtained from global coarse mesh solution has been developed.It expands the intra-nodal flux distributions into nonseparable semi-ana...A multi-group pin power reconstruction method that fully exploits nodal information obtained from global coarse mesh solution has been developed.It expands the intra-nodal flux distributions into nonseparable semi-analytic basis functions,and a colorset based form function generating method is proposed,which can accurately model the spectral interaction occurring at assembly interface.To demonstrate its accuracy and applicability to realistic problems, the new method is tested against two benchmark problems,including a mixed-oxide fuel problem.The results show that the new method is comparable in accuracy to fine-mesh methods.展开更多
In order to solve fuzzy mathematical programming with soft constraints,the initial models must first be converted into crisp models.Membership functions are employed to describe the fuzzy right-hand side parameters ne...In order to solve fuzzy mathematical programming with soft constraints,the initial models must first be converted into crisp models.Membership functions are employed to describe the fuzzy right-hand side parameters needed to achieve this conversion.In some cases,echelon form membership functions(EFMFs)are required to depict the actual fuzzy situation.However,due to their discrete properties,fuzzy programming problems with such membership functions cannot be modeled by traditional methods.Motivated by these challenges,this paper introduces a novel absolute value representation modeling approach to formulate fuzzy programming using EFMFs.This approach can translate a discrete model to a continuous one which can then be easily solved.Finally,by means of a numerical example,the effectiveness of our new approach is demonstrated.展开更多
In this paper a zero-density estimate of the large sieve type is given for the automorphic L-function L f (s,χ),where f is a holomorphic cusp form and χ a Dirichlet character of mod q.
In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equat...In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geom...This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11801006 and 12071489).
文摘In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
基金supported by NNSF for Young Scholars of China(11001206)
文摘In this paper, the integral representation for some polyharmonic functions with values in a universal Clifford algebra Cl(Vn,n) is studied and Gauss-mean value formula for triharmonic functions with values in a Clifford algebra Cl(Vn,n) are proved by using Stokes formula and higher order Cauchy-Pompeiu formula. As application some results about growth condition at infinity are obtained.
文摘In this paper we study the convergence nf a class of means on H^p(G)(0<p<1),the means take the Bochner-Riesz means in[1],the generalized Bochner-Riesz means in[2],and the operators T^(Φ_r)in[3]as special cases.We obtain weak-type estimates for the associated maximal operators and the maximal mean boundedness for the means.
文摘The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.
文摘Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)||. Our results are sharp. In addition, we also generalize Hayman's theorem on integral mean
文摘Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).
文摘A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.
文摘Discourse markers are among the basic building blocks of spoken language.This study gauges the use of the discourse marker I mean in spoken English,specifically in the talk show setting,with the aim of providing a comprehensive description of the pragmatic functions of I mean.After extracting large quantities of extended conversations from various talk shows,a corpus for fur⁃ther extensive discourse analysis will then be established.Our small-scale yet fine-grained study proposes that the core functions of I mean includes reformulation,elaboration,lexical search and interpersonal management.The wide use of discourse markers in TV talk shows serves to promote the logic and organization of interviewing language as well as the overall discourse setting whereby the talk shows proceed smoothly with the interlocutors’dynamic devotion into conversation.
基金supported by the National Natural Science Foundation of China(No.11172268)
文摘By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.
文摘The present study examines the pragmatic functions of the discourse marker I mean based on a case study of an American soap opera Desperate Housewives.Four pragmatic functions of I mean are detected and discussed.Among them,two functions are more frequently used including supplementary and explanatory function,reminding and emphasizing function.
基金Partially supported by the National Natural Science Foundation of China via research project 10605016
文摘A multi-group pin power reconstruction method that fully exploits nodal information obtained from global coarse mesh solution has been developed.It expands the intra-nodal flux distributions into nonseparable semi-analytic basis functions,and a colorset based form function generating method is proposed,which can accurately model the spectral interaction occurring at assembly interface.To demonstrate its accuracy and applicability to realistic problems, the new method is tested against two benchmark problems,including a mixed-oxide fuel problem.The results show that the new method is comparable in accuracy to fine-mesh methods.
文摘In order to solve fuzzy mathematical programming with soft constraints,the initial models must first be converted into crisp models.Membership functions are employed to describe the fuzzy right-hand side parameters needed to achieve this conversion.In some cases,echelon form membership functions(EFMFs)are required to depict the actual fuzzy situation.However,due to their discrete properties,fuzzy programming problems with such membership functions cannot be modeled by traditional methods.Motivated by these challenges,this paper introduces a novel absolute value representation modeling approach to formulate fuzzy programming using EFMFs.This approach can translate a discrete model to a continuous one which can then be easily solved.Finally,by means of a numerical example,the effectiveness of our new approach is demonstrated.
基金Supported by the NNSF of China(11071186)Supported by the Science Foundation for the Excellent Youth Scholars of Shanghai(ssc08017)Supported by the Doctoral Research Fund of Shanghai Ocean University
文摘In this paper a zero-density estimate of the large sieve type is given for the automorphic L-function L f (s,χ),where f is a holomorphic cusp form and χ a Dirichlet character of mod q.
文摘In this paper, we present a basic theory of mean-square almost periodicity, apply the theory in random differential equation, and obtain mean-square almost periodic solution of some types stochastic differential equation.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.