The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish...Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.展开更多
To calculate the flow resistance of a main cable dehumidification system,this study considers the air flow in the main cable as the flow in a porous medium,and adopts the Hagen–Poiseuille equation by using average hy...To calculate the flow resistance of a main cable dehumidification system,this study considers the air flow in the main cable as the flow in a porous medium,and adopts the Hagen–Poiseuille equation by using average hydraulic radius and capillary bundle models.A mathematical derivation is combined with an experimental study to obtain a semi-empirical flow resistance formula.Additionally,Fluent software is used to simulate the flow resistance across the main cable relative to the experimental values.Based on the actual measured results for a Yangtze River bridge,this study verifies the semi-empirical formula,and indicates that it can be applied in actual engineering.展开更多
The value of friction coefficient between the main cable and saddle, relates to not only the anti-slippage stability of three-tower suspension bridge, but also the reasonable stiffness of the middle tower and the magn...The value of friction coefficient between the main cable and saddle, relates to not only the anti-slippage stability of three-tower suspension bridge, but also the reasonable stiffness of the middle tower and the magnitude of rigidity of the whole bridge. First, the paper does some comparative studies about the relevant provisions of international norms, and then, summarizes the relevant load test results both at home and abroad. Finally, the paper draws the appropriate anti-slippage safety factor for the most unfavorable load in accordance with international load standards, and discusses the rationality and feasibility of the friction coefficient of 0.2 between main cable and saddle.展开更多
The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high tempe...The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high temperature outlet air of dehumidification system to heat up regeneration air of rotary-type dehumidifier is put forward in this paper. The concrete scheme is to install a heat exchanger on air-out pipeline of roots blower and air-in pipeline of regeneration electric heater of rotary dehumidifier. Air preheated by the heat exchanger enters regeneration electric heater of rotary-type dehumidifier. Energy conservation of main cable dehumidification system for the Yangtze River highway bridge is calculated, and the results show that energy conservation rate can reach 44 %.展开更多
Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main c...Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.展开更多
A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this...A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.展开更多
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA04Z416)the National Science Fund for Distinguished Young Scholars(No.50725828)
文摘Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.
基金Ministry of Communications and Provincial and Joint Research Project[2008-353-332-170].
文摘To calculate the flow resistance of a main cable dehumidification system,this study considers the air flow in the main cable as the flow in a porous medium,and adopts the Hagen–Poiseuille equation by using average hydraulic radius and capillary bundle models.A mathematical derivation is combined with an experimental study to obtain a semi-empirical flow resistance formula.Additionally,Fluent software is used to simulate the flow resistance across the main cable relative to the experimental values.Based on the actual measured results for a Yangtze River bridge,this study verifies the semi-empirical formula,and indicates that it can be applied in actual engineering.
基金National Science and Technology Support Program of China(No.2009BAG15B01)
文摘The value of friction coefficient between the main cable and saddle, relates to not only the anti-slippage stability of three-tower suspension bridge, but also the reasonable stiffness of the middle tower and the magnitude of rigidity of the whole bridge. First, the paper does some comparative studies about the relevant provisions of international norms, and then, summarizes the relevant load test results both at home and abroad. Finally, the paper draws the appropriate anti-slippage safety factor for the most unfavorable load in accordance with international load standards, and discusses the rationality and feasibility of the friction coefficient of 0.2 between main cable and saddle.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high temperature outlet air of dehumidification system to heat up regeneration air of rotary-type dehumidifier is put forward in this paper. The concrete scheme is to install a heat exchanger on air-out pipeline of roots blower and air-in pipeline of regeneration electric heater of rotary dehumidifier. Air preheated by the heat exchanger enters regeneration electric heater of rotary-type dehumidifier. Energy conservation of main cable dehumidification system for the Yangtze River highway bridge is calculated, and the results show that energy conservation rate can reach 44 %.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.
文摘A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.