In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power s...In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.展开更多
Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to...Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.展开更多
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical...In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.展开更多
Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ ...Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.展开更多
Double Toeplitz(shortly DT)codes are introduced here as a generalization of double circulant codes.The authors show that such a code is isodual,hence formally self-dual(FSD).FSD codes form a far-reaching generalizatio...Double Toeplitz(shortly DT)codes are introduced here as a generalization of double circulant codes.The authors show that such a code is isodual,hence formally self-dual(FSD).FSD codes form a far-reaching generalization of self-dual codes,the most important class of codes of rate one-half.Self-dual DT codes are characterized as double circulant or double negacirculant.Likewise,even binary DT codes are characterized as double circulant.Numerical examples obtained by exhaustive search show that the codes constructed have best-known minimum distance,up to one unit,amongst formally self-dual codes,and sometimes improve on the known values.For q=2,the authors find four improvements on the best-known values of the minimum distance of FSD codes.Over F4 an explicit construction of DT codes,based on quadratic residues in a prime field,performs equally well.The authors show that DT codes are asymptotically good over Fq.Specifically,the authors construct DT codes arbitrarily close to the asymptotic Varshamov-Gilbert bound for codes of rate one half.展开更多
文摘In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
文摘Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.
文摘In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search.
基金supported by the Natural Science Foundation of Hubei Province (B20114410)the Natural Science Foundation of Hubei Polytechnic University (12xjz14A)
文摘Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.
基金supported by the National Natural Science Foundation of China under Grant No.12071001。
文摘Double Toeplitz(shortly DT)codes are introduced here as a generalization of double circulant codes.The authors show that such a code is isodual,hence formally self-dual(FSD).FSD codes form a far-reaching generalization of self-dual codes,the most important class of codes of rate one-half.Self-dual DT codes are characterized as double circulant or double negacirculant.Likewise,even binary DT codes are characterized as double circulant.Numerical examples obtained by exhaustive search show that the codes constructed have best-known minimum distance,up to one unit,amongst formally self-dual codes,and sometimes improve on the known values.For q=2,the authors find four improvements on the best-known values of the minimum distance of FSD codes.Over F4 an explicit construction of DT codes,based on quadratic residues in a prime field,performs equally well.The authors show that DT codes are asymptotically good over Fq.Specifically,the authors construct DT codes arbitrarily close to the asymptotic Varshamov-Gilbert bound for codes of rate one half.