In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-l...In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-linking reaction was studied.The O-containing functional groups change the weight loss and H_2O,CO_2,CO yields of bituminous coal before and after[H0Emim][BF_4]and[Amim]Cl pre-treatment and were detected by Fourier Transform Infrared spectroscopy(FT1R) and Thermo Gravimetric(TC) analysis.The results show that | AmimjCI has a weaker ability to inhibit the cross-linking reaction of bituminous coal compared to[HOEmim][BF_4].Besides,based on Quantum Chemistry calculation,it was found that the different inhibiting effects of |H0Emim][BF_4]and[Amim]Cl are greatly related to their anions and the H linked with C2 atom on the imidazole ring.The H-donor ability of coal will be enhanced by[HOEmim][BF_4]leading to a weaker cross-linking reaction of coal.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and r...The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and reverse reactions was proposed.展开更多
The cycloaddition reaction of ketene and formaldehyde,lesding to 2- oxetanone,has been studied theoretically by means of RHF/3-21G.This reaction is believed to be nonsynchronous but concerted,taking place through a tw...The cycloaddition reaction of ketene and formaldehyde,lesding to 2- oxetanone,has been studied theoretically by means of RHF/3-21G.This reaction is believed to be nonsynchronous but concerted,taking place through a twisted four membered ring transition state.Two types of frontier orbital interactions are involved in this reaction.The activation barrier is calculated to be 123.1KJ/mol (MP2/3-21G result).展开更多
A novel nano-TiO2-xNx composite was used as photocatalyst and added to the interior wall paint. The average diameter of nano-TiO2-xNx was about 20 nm. The majority crystal component of the sample was anatase and its o...A novel nano-TiO2-xNx composite was used as photocatalyst and added to the interior wall paint. The average diameter of nano-TiO2-xNx was about 20 nm. The majority crystal component of the sample was anatase and its optical absorption edge was shifted from 387 nm to 520 nm significantly. Nano-composite paint containing different dosage of nano- TiO2-xNx was investigated to study the properties of formaldehyde decomposition in the air. Testing results show that the formaldehyde decomposition ratio of that nano-paint can almost reach above 80%, especially for that of the paint containing 3% (w/w) nano-TiO2-xNx which exceeded 90%. The primary investigation on the reaction kinetics of photocatalytic formaldehyde decomposition indicated that the experiment data well fit the model of first-order reaction kinetics.展开更多
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included...The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.展开更多
Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sus...Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sustainable photocatalytic performance.Here,a novel strategy to modulate the structural properties of BiSbO_(4)using light-induced dynamic oxygen vacancies is reported by us for efficient and stable photocatalytic oxidation of formaldehyde.Interestingly,the continuous consumption and replenishment of vacancies(namely dynamic vacancies)ensure the dynamic stability of oxygen vacancies,thus guaranteeing the excellent photocatalytic stability.The oxygen vacancies could also accelerate the electron migration,inhibit the photogenerated electron/hole recombination,widen the light absorption spectra,and thus improve the photocatalytic formaldehyde removal performance.Combined with the results of in situ DRIFTS,the reaction mechanism for each step of formaldehyde oxidation is revealed.As supported by DFT calculation of Gibbs free energy,the introduction of oxygen vacancies into BiSbO_(4)can promote spontaneous process of formaldehyde oxidation.Our work highlights a promising approach for stabilizing the defects and proposes the photocatalytic reaction mechanism in combination with the thermodynamic functions.展开更多
Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.T...Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.To this end,an electrochemical sys-tem combining cathodic CO_(2)RR with anodic FOR was developed,which enables the formate electrosynthesis at ultra-low voltage.Cathodic CO_(2)RR employing the BiOCl electrode in H-cell exhibited formate Faradaic efficiency(FE)higher than 90% within a wide potential range from−0.48 to−1.32 V_(RHE).In flow cell,the current density of 100 mA cm^(−2) was achieved at−0.67 V_(RHE).The anodic FOR using the Cu_(2)O electrode displayed a low onset potential of−0.13 V_(RHE) and nearly 100%formate and H_(2) selectivity from 0.05 to 0.35 V_(RHE).The CO_(2)RR and FOR were constructed in a flow cell through membrane electrode assembly for the electrosynthesis of formate,where the CO_(2)RR//FOR delivered an enhanced current density of 100 mA cm^(−2) at 0.86 V.This work provides a promising pair-electrosynthesis of value-added chemicals with high FE and low energy consumption.展开更多
The synthesis of polyoxymethylene dimethyl ethers as an ideal diesel fuel additive is the current hot topic of modern petrochemical industry for their expedient properties in mitigating air pollutants emission during ...The synthesis of polyoxymethylene dimethyl ethers as an ideal diesel fuel additive is the current hot topic of modern petrochemical industry for their expedient properties in mitigating air pollutants emission during combustion.In this work,a series of spherical sulfated zirconia catalysts were prepared by a one-pot hydrothermal method assisted with surfactant cetyltrimethylammonium bromide(CTAB).The prepared sulfated zirconia catalysts were used to catalyze PODEn synthesis from methanol and formaldehyde solution.Various characterization(XRD,BET,SEM,TGA,NH_(3)-TPD,FTIR,and Py-IR)were employed to elaborate the structure–activity relationship of the studied catalytic system.The results demonstrated that S/Zr molar ratio in precursor solution played an effective role on catalyst morphology and acidic properties,where the weak Brønsted acid sites and strong Lewis acid sites were favorable to the conversion of methanol and formation of long-chain PODEn,respectively.The reaction parameters such as catalyst amount,molar ratio of FA/MeOH,reaction time,temperature and pressure were optimized.The speculated reaction pathway for PODEn synthesis was proposed based on the synergy of Brønsted and Lewis acid sites,which suggested that Brønsted and Lewis acid sites might be advantageous to the activation of polyoxymethylene hemiformals[CH_(3)(OCH_(2))_(n)OH]and methylene glycol(HOCH_(2)OH),respectively.展开更多
This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used...This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used to prepare tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 %w/w. The kinetic values of thermal curing of Phenol-formaldehyde (PF), tannin-formaldehyde and tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 wt% from TF were studied by monitoring the weight changes which occurred in the samples weight during thermosetting process at four temperature (160°C, 180°C, 200°C and 220°C). The total evolved condensation products from curing reactions were about 32% - 36% per sample weight, and the rate of curing reaction constants was ranged between 0.163 %wt·min-1 at 160°C and 0.50 %wt·min-1 at 220°C. The path of TFPF curing and kinetic values indicated that these resins could be cured with the behavior and velocity comparable to that of PF. The activation energy of TFPF cross-linking was higher than that of PF. Increasing TF level to 20% and 40% into PF can reduce the amount of PF curing reactions density and weight loss percentage. The global kinetic properties showed that the TF participated in the thermoset network formation with acceptable activity and performance. The general results of this paper show that the TF is a suitable alternative material for partially replacement into PF resin.展开更多
The reaction mechanisms between formaldehyde and MoOx(x = 1, 2, 3) have been studied thoroughly in this paper. Five reaction pathways were found in three reactions(reactions Ⅰ to Ⅲ) through studying the mechanisms o...The reaction mechanisms between formaldehyde and MoOx(x = 1, 2, 3) have been studied thoroughly in this paper. Five reaction pathways were found in three reactions(reactions Ⅰ to Ⅲ) through studying the mechanisms of MoOx(x = 1, 2, 3) catalyzing formaldehyde. Different products were obtained from three reactions. Of all three reactions, the barrier energy of Route ⅡA is the lowest(4.70 kcal/mol), which means in MoOx(x = 1, 2, 3), MoO2 has the best catalytic effect. Compared with other similar non-toxic treatments of formaldehyde, our barrier energy is the lowest. In this research, there was no good leaving group of the compound, so the mechanisms are addition reaction. We speculate that there must be an addition reaction to the more complex reactions to molybdenum oxides and aldehydes. As a chemical reagent for removing formaldehyde, it only absorbs formaldehyde and does not emit other toxic substances outward. Molybdenum oxides retain its original structures of the final products, which means it has excellent stability in the reaction of MoOx(x = 1, 2, 3) + HCHO. The mechanisms of all three reactions are addition reactions, but they are entirely different. As the number of oxygen atoms increases, the reaction mechanisms become simpler.展开更多
An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-a...An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-alkyl-3-vinyl imidazole hydrobromide(alkyl=ethyl,butyl,octyl,dodecyl),and were then assembled with phosphotungstic acid(H_(3)PW_(12)O_(40))to form the catalysts.The CLPIL-PWs have been applied to the oxidative removal of dibenzothiophene(DBT)from model oil with H_(2)O_(2) as an oxidant.The effects of ionic liquid(IL)cationic species,varying the DVB/IL molar ratio in the polymerization process,and varying operating conditions were investigated.The CLPIL-PWs were characterized by inductively coupled plasma(ICP)mass spectrometry,elemental analysis,scanning electron microscopy(SEM),Fourier transform infra-red(FTIR)spectroscopy,X-ray diffraction(XRD),^(13)C and^(31)P nuclear magnetic resonance(NMR)spectroscopy.The polydivinylbenzene-co-1-n-octyl-3-vinyl imidazole phosphotungstate(P(DVB-OVIm)PW)exhibited the highest DBT removal efficiency(99.9%)and remarkable recyclability,and could be reused eight times without reducing its activity.Finally,an extraction-free ODS mechanism is proposed.展开更多
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p...Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.展开更多
Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) ...Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) with other analytical techniques (thermogravimetry analysis and in situ X-ray diffraction). Non-isothermal kinetic was examined in air and Ar. A complete analysis of the evolution of infrared spectra matched with crystalline phase transition data during the course of reaction allows access to significant and accurate information about molecular dynamics. While thermogravimetry gives broad conclusion about two steps reaction (dehydration and decarboxylation), in line approach (in situ X-ray and in situ DRIFT coupled to μGC-MS) is proposed as an example of a new robust and forward-looking analysis. While decomposition mechanism of copper acetate monohydrate is still not well elucidated yet previously, the present in-line characterization results lead to accurate data making the corresponding mechanism explicit.展开更多
Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharid...Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharide) as a cross-linker via polyaddition remains a challenging subject in polymer chemistry. Here, we report the synthesis of PUEs using an aromatic isocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol) and two polyester polyols (polycaprolactone and polycarbonate diols), and sucrose as a crosslinker by a one-shot method. The PUEs containing sucrose were successfully produced. The use of sucrose was essential to obtain the desired PUEs containing sucrose units in the main chain.展开更多
基金the support from the National Natural Science Foundation of China(Nos.51304073and 51304071)the Educational Commission of Henan Province(Nos.13A440324 and 12B440004)+1 种基金the Open Projects of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.12KF02)Henan Polytechnic University(Nos.B2012-068 and B2012-085)
文摘In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-linking reaction was studied.The O-containing functional groups change the weight loss and H_2O,CO_2,CO yields of bituminous coal before and after[H0Emim][BF_4]and[Amim]Cl pre-treatment and were detected by Fourier Transform Infrared spectroscopy(FT1R) and Thermo Gravimetric(TC) analysis.The results show that | AmimjCI has a weaker ability to inhibit the cross-linking reaction of bituminous coal compared to[HOEmim][BF_4].Besides,based on Quantum Chemistry calculation,it was found that the different inhibiting effects of |H0Emim][BF_4]and[Amim]Cl are greatly related to their anions and the H linked with C2 atom on the imidazole ring.The H-donor ability of coal will be enhanced by[HOEmim][BF_4]leading to a weaker cross-linking reaction of coal.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘The kinetics of the reaction of [Ni(PnAO)—6H]° with formaldehyde was studied in H_2O—CH_3OH solution under neutral condition and a complicated mechanism with three steps including competitive, consecutive and reverse reactions was proposed.
基金This project is supported by Foundation of National Education Committee and Natural Science Fund of China
文摘The cycloaddition reaction of ketene and formaldehyde,lesding to 2- oxetanone,has been studied theoretically by means of RHF/3-21G.This reaction is believed to be nonsynchronous but concerted,taking place through a twisted four membered ring transition state.Two types of frontier orbital interactions are involved in this reaction.The activation barrier is calculated to be 123.1KJ/mol (MP2/3-21G result).
基金Project supported by the Foundation of National Key Technologies R&D Program--Shanghai World Expo Special Project (Grant No.04DZ05803)
文摘A novel nano-TiO2-xNx composite was used as photocatalyst and added to the interior wall paint. The average diameter of nano-TiO2-xNx was about 20 nm. The majority crystal component of the sample was anatase and its optical absorption edge was shifted from 387 nm to 520 nm significantly. Nano-composite paint containing different dosage of nano- TiO2-xNx was investigated to study the properties of formaldehyde decomposition in the air. Testing results show that the formaldehyde decomposition ratio of that nano-paint can almost reach above 80%, especially for that of the paint containing 3% (w/w) nano-TiO2-xNx which exceeded 90%. The primary investigation on the reaction kinetics of photocatalytic formaldehyde decomposition indicated that the experiment data well fit the model of first-order reaction kinetics.
基金supported by the Key Program of the National Natural Science Foundation of China(30930074)
文摘The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.
基金supported by the National Natural Science Foundation of China (21822601, 21777011, and 21501016)the Innovative Research Team of Chongqing (CXQT19023)
文摘Defect engineering has been regarded as a versatile strategy to maneuver the photocatalytic activity.However,there are a few studies concerning how to maintain the stability of defects,which is important to ensure sustainable photocatalytic performance.Here,a novel strategy to modulate the structural properties of BiSbO_(4)using light-induced dynamic oxygen vacancies is reported by us for efficient and stable photocatalytic oxidation of formaldehyde.Interestingly,the continuous consumption and replenishment of vacancies(namely dynamic vacancies)ensure the dynamic stability of oxygen vacancies,thus guaranteeing the excellent photocatalytic stability.The oxygen vacancies could also accelerate the electron migration,inhibit the photogenerated electron/hole recombination,widen the light absorption spectra,and thus improve the photocatalytic formaldehyde removal performance.Combined with the results of in situ DRIFTS,the reaction mechanism for each step of formaldehyde oxidation is revealed.As supported by DFT calculation of Gibbs free energy,the introduction of oxygen vacancies into BiSbO_(4)can promote spontaneous process of formaldehyde oxidation.Our work highlights a promising approach for stabilizing the defects and proposes the photocatalytic reaction mechanism in combination with the thermodynamic functions.
基金This work was supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(22122901,21902047)+1 种基金the Provincial Natural Science Foundation of Hunan(2020JJ5045,2021JJ20024,2021RC3054)the Shenzhen Science and Technology Program(JCYJ20210324140610028).
文摘Formate can be synthesized electrochemically by CO_(2) reduction reaction(CO_(2)RR)or formalde-hyde oxidation reaction(FOR).The CO_(2)RR approach suffers from kinetic-sluggish oxygen evolution reac-tion at the anode.To this end,an electrochemical sys-tem combining cathodic CO_(2)RR with anodic FOR was developed,which enables the formate electrosynthesis at ultra-low voltage.Cathodic CO_(2)RR employing the BiOCl electrode in H-cell exhibited formate Faradaic efficiency(FE)higher than 90% within a wide potential range from−0.48 to−1.32 V_(RHE).In flow cell,the current density of 100 mA cm^(−2) was achieved at−0.67 V_(RHE).The anodic FOR using the Cu_(2)O electrode displayed a low onset potential of−0.13 V_(RHE) and nearly 100%formate and H_(2) selectivity from 0.05 to 0.35 V_(RHE).The CO_(2)RR and FOR were constructed in a flow cell through membrane electrode assembly for the electrosynthesis of formate,where the CO_(2)RR//FOR delivered an enhanced current density of 100 mA cm^(−2) at 0.86 V.This work provides a promising pair-electrosynthesis of value-added chemicals with high FE and low energy consumption.
基金This work was financially supported by National Key Research and Development Program of China(No.2018YFB0604804).
文摘The synthesis of polyoxymethylene dimethyl ethers as an ideal diesel fuel additive is the current hot topic of modern petrochemical industry for their expedient properties in mitigating air pollutants emission during combustion.In this work,a series of spherical sulfated zirconia catalysts were prepared by a one-pot hydrothermal method assisted with surfactant cetyltrimethylammonium bromide(CTAB).The prepared sulfated zirconia catalysts were used to catalyze PODEn synthesis from methanol and formaldehyde solution.Various characterization(XRD,BET,SEM,TGA,NH_(3)-TPD,FTIR,and Py-IR)were employed to elaborate the structure–activity relationship of the studied catalytic system.The results demonstrated that S/Zr molar ratio in precursor solution played an effective role on catalyst morphology and acidic properties,where the weak Brønsted acid sites and strong Lewis acid sites were favorable to the conversion of methanol and formation of long-chain PODEn,respectively.The reaction parameters such as catalyst amount,molar ratio of FA/MeOH,reaction time,temperature and pressure were optimized.The speculated reaction pathway for PODEn synthesis was proposed based on the synergy of Brønsted and Lewis acid sites,which suggested that Brønsted and Lewis acid sites might be advantageous to the activation of polyoxymethylene hemiformals[CH_(3)(OCH_(2))_(n)OH]and methylene glycol(HOCH_(2)OH),respectively.
文摘This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used to prepare tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 %w/w. The kinetic values of thermal curing of Phenol-formaldehyde (PF), tannin-formaldehyde and tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 wt% from TF were studied by monitoring the weight changes which occurred in the samples weight during thermosetting process at four temperature (160°C, 180°C, 200°C and 220°C). The total evolved condensation products from curing reactions were about 32% - 36% per sample weight, and the rate of curing reaction constants was ranged between 0.163 %wt·min-1 at 160°C and 0.50 %wt·min-1 at 220°C. The path of TFPF curing and kinetic values indicated that these resins could be cured with the behavior and velocity comparable to that of PF. The activation energy of TFPF cross-linking was higher than that of PF. Increasing TF level to 20% and 40% into PF can reduce the amount of PF curing reactions density and weight loss percentage. The global kinetic properties showed that the TF participated in the thermoset network formation with acceptable activity and performance. The general results of this paper show that the TF is a suitable alternative material for partially replacement into PF resin.
基金This work was supported by a grant from the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)of the Korean government(2021R1A3B1068304).The authors also acknowledge the support provided by a grant from the NRF funded by MSIT of the Korean government(RS-2023-00243840)and Brain Pool program(RS-2023-00222393).D.W.Boukhvalov acknowledges support from Jiangsu Innovative and Entrepreneurial Talents Project,and the Ministry of Science and Education of Russian Federation(FEUZ-2023-0013).
文摘通过氮掺杂TiO_(2)(N-TiO_(2))浸渍蜂窝过滤器构建了一系列原型光催化空气净化器(AP(N_(x)-C_(y)))系统,并用于在UV-LED光(1 W)照射条件下光催化分解0.5-5 ppm甲醛(CH_(2)O)蒸汽.在上述催化过滤器系统中,Nx和Cy分别代表N/Ti摩尔比(0-20)和N-TiO_(2)浓度(2-20 mg mL^(-1)).光催化分解实验结果表明,AP(N_(10)-C_(10))的性能最好,其催化CH2O转化为CO_(2)的转化率最高,循环反应10次后CO_(2)产率仍达到89.2%,在干燥空气中的清洁空气输送速率为9.45 L min^(-1).N10-C10的电荷载流子寿命(τa:1.70 ns)优于其他样品(如纯TiO_(2)的电荷载流子寿命为1.37 ns),这表明N缺陷(No)有助于降低带隙(3.10 eV)和产生氧空位OVs-Ti^(3+),这与密度泛函理论(DFT)模拟结果一致.采用原位漫反射红外傅里叶变换、电子顺磁共振和DFT分析等多种方法研究了CH_(2)O的光催化氧化途径.结果表明,氧化过程涉及多个能量有利的中间步骤(例如CH2O以CH_(2)O_(2)的形式在TiO_(2)-OV{110}表面的桥连O/OH基团上发生放热共价吸附,随后通过催化脱氢/氧化反应直接生成CO_(2):CH_(2)O_(2)/HCOO^(-)+•OH→H_(2)O+CO_(2)).这些步骤与具有N杂质的{101}表面上化学活性Ti原子的态密度计算结果一致.预计No缺陷和OVs的存在将通过降低活化能垒来影响反应能量和中间产物,从而在加湿条件下实现有效的矿化.综上,本文为设计和构建先进的光催化系统,并用于环境空气中醛类挥发性有机物(VOCs)的有效矿化提供了新思路.
基金supported by the school fund of Shanxi Institute of technology(201605001,20180010012)the 2016 annual major science and technology projects of Shanxi Province(MC2016-02/5)+2 种基金the Shanxi Advantageous and Characteristic Disciplines of “Project 1331”the National Natural Science Foundation of China(No.21373025)the major project of Tangshan Normal College(Nos.2017B01 and 2017B02)
文摘The reaction mechanisms between formaldehyde and MoOx(x = 1, 2, 3) have been studied thoroughly in this paper. Five reaction pathways were found in three reactions(reactions Ⅰ to Ⅲ) through studying the mechanisms of MoOx(x = 1, 2, 3) catalyzing formaldehyde. Different products were obtained from three reactions. Of all three reactions, the barrier energy of Route ⅡA is the lowest(4.70 kcal/mol), which means in MoOx(x = 1, 2, 3), MoO2 has the best catalytic effect. Compared with other similar non-toxic treatments of formaldehyde, our barrier energy is the lowest. In this research, there was no good leaving group of the compound, so the mechanisms are addition reaction. We speculate that there must be an addition reaction to the more complex reactions to molybdenum oxides and aldehydes. As a chemical reagent for removing formaldehyde, it only absorbs formaldehyde and does not emit other toxic substances outward. Molybdenum oxides retain its original structures of the final products, which means it has excellent stability in the reaction of MoOx(x = 1, 2, 3) + HCHO. The mechanisms of all three reactions are addition reactions, but they are entirely different. As the number of oxygen atoms increases, the reaction mechanisms become simpler.
基金supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2019B025)
文摘An efficient extraction-free oxidative desulfurization(ODS)process using a series of cross-linked polyionic liquid phosphotungstate(CLPIL-PW)catalysts is reported.The cross-linked PILs were prepared with DVB and 1-n-alkyl-3-vinyl imidazole hydrobromide(alkyl=ethyl,butyl,octyl,dodecyl),and were then assembled with phosphotungstic acid(H_(3)PW_(12)O_(40))to form the catalysts.The CLPIL-PWs have been applied to the oxidative removal of dibenzothiophene(DBT)from model oil with H_(2)O_(2) as an oxidant.The effects of ionic liquid(IL)cationic species,varying the DVB/IL molar ratio in the polymerization process,and varying operating conditions were investigated.The CLPIL-PWs were characterized by inductively coupled plasma(ICP)mass spectrometry,elemental analysis,scanning electron microscopy(SEM),Fourier transform infra-red(FTIR)spectroscopy,X-ray diffraction(XRD),^(13)C and^(31)P nuclear magnetic resonance(NMR)spectroscopy.The polydivinylbenzene-co-1-n-octyl-3-vinyl imidazole phosphotungstate(P(DVB-OVIm)PW)exhibited the highest DBT removal efficiency(99.9%)and remarkable recyclability,and could be reused eight times without reducing its activity.Finally,an extraction-free ODS mechanism is proposed.
基金supported by the National Basic Research Program of China (973 Program,2015CB932303)the National Natural Science Founda-tion of China (21373175,21621091)~~
文摘Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.
文摘Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) with other analytical techniques (thermogravimetry analysis and in situ X-ray diffraction). Non-isothermal kinetic was examined in air and Ar. A complete analysis of the evolution of infrared spectra matched with crystalline phase transition data during the course of reaction allows access to significant and accurate information about molecular dynamics. While thermogravimetry gives broad conclusion about two steps reaction (dehydration and decarboxylation), in line approach (in situ X-ray and in situ DRIFT coupled to μGC-MS) is proposed as an example of a new robust and forward-looking analysis. While decomposition mechanism of copper acetate monohydrate is still not well elucidated yet previously, the present in-line characterization results lead to accurate data making the corresponding mechanism explicit.
文摘Polyaddition using isocyanate and polyol forms polyurethane elastomer (PUE). However, this method has rarely been applied to the construction of PUEs containing sucrose. Hence, the introduction of sucrose (disaccharide) as a cross-linker via polyaddition remains a challenging subject in polymer chemistry. Here, we report the synthesis of PUEs using an aromatic isocyanate (4,4’-diphenylmethane diisocyanate), polyols including a polyether polyol (polytetramethylene glycol) and two polyester polyols (polycaprolactone and polycarbonate diols), and sucrose as a crosslinker by a one-shot method. The PUEs containing sucrose were successfully produced. The use of sucrose was essential to obtain the desired PUEs containing sucrose units in the main chain.