Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ...Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.展开更多
The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the ...The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.展开更多
A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolu...A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.展开更多
Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the ...Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.展开更多
Shale gas reservoirs are unconventional tight gas reservoirs,in which horizontal wells and hydraulic fracturing are required to achieve commercial development.The fracture networks created by hydraulic fracturing can ...Shale gas reservoirs are unconventional tight gas reservoirs,in which horizontal wells and hydraulic fracturing are required to achieve commercial development.The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery.However,large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation,will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation.Supercritical water(SCW)treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state(at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa).An experiment was conducted to simulate the reaction between shale and SCW,and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment.The experimental results show that the shale porosity and permeability increase by 213.43%and 2198.37%,respectively.The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment.The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals,acid-catalyzed decomposition of carbonate minerals and feldspar minerals,hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension.SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation,which will broaden the scope and scale of shale formation stimulation.展开更多
基金the National Natural Science Foundation of China(No.50574061)
文摘Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.
文摘The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper.
基金Supported by the National Natural Science Foundation of China(51604236)Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN201913)+1 种基金Science and Technology Planning Project of the Sichuan Province,China(2018JY0436)Sichuan Youth Science and Technology Innovation Research Team Project for Unconventional Oil and Gas Reservoir Protection(2016TD0016)。
文摘A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.
基金supported by the National Natural Science Foundation(Project No.50574061)the Changjiang Scholars and Innovative Research Team(No.IRT0411),Ministry of Education
文摘Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.
基金supported by the National Natural Science Foundation of China (No.41902154,No.51674209No.51604236)+3 种基金the Sichuan Youth Science and Technology Innovation Research Team Project (No.2021JDTDO017)the Sichuan Province Science and Technology Innovation Miaozi Engineering Cultivation Project (No.2021100)the China Scholarship Council (No.202109225004)。
文摘Shale gas reservoirs are unconventional tight gas reservoirs,in which horizontal wells and hydraulic fracturing are required to achieve commercial development.The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery.However,large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation,will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation.Supercritical water(SCW)treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state(at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa).An experiment was conducted to simulate the reaction between shale and SCW,and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment.The experimental results show that the shale porosity and permeability increase by 213.43%and 2198.37%,respectively.The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment.The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals,acid-catalyzed decomposition of carbonate minerals and feldspar minerals,hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension.SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation,which will broaden the scope and scale of shale formation stimulation.